Unknown

Dataset Information

0

Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d-Transition Metal Layered Double Hydroxides.


ABSTRACT: Layered double hydroxides (LDHs) are among the most active and studied catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. However, previous studies have generally either focused on a small number of LDHs, applied synthetic routes with limited structural control, or used non-intrinsic activity metrics, thus hampering the construction of consistent structure-activity-relations. Herein, by employing new individually developed synthesis strategies with atomic structural control, we obtained a broad series of crystalline α-MA (II)MB (III) LDH and β-MA (OH)2 electrocatalysts (MA =Ni, Co, and MB =Co, Fe, Mn). We further derived their intrinsic activity through electrochemical active surface area normalization, yielding the trend NiFe LDH > CoFe LDH > Fe-free Co-containing catalysts > Fe-Co-free Ni-based catalysts. Our theoretical reactivity analysis revealed that these intrinsic activity trends originate from the dual-metal-site nature of the reaction centers, which lead to composition-dependent synergies and diverse scaling relationships that may be used to design catalysts with improved performance.

SUBMITTER: Dionigi F 

PROVIDER: S-EPMC8252729 | biostudies-literature | 2021 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d-Transition Metal Layered Double Hydroxides.

Dionigi Fabio F   Zhu Jing J   Zeng Zhenhua Z   Merzdorf Thomas T   Sarodnik Hannes H   Gliech Manuel M   Pan Lujin L   Li Wei-Xue WX   Greeley Jeffrey J   Strasser Peter P  

Angewandte Chemie (International ed. in English) 20210526 26


Layered double hydroxides (LDHs) are among the most active and studied catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. However, previous studies have generally either focused on a small number of LDHs, applied synthetic routes with limited structural control, or used non-intrinsic activity metrics, thus hampering the construction of consistent structure-activity-relations. Herein, by employing new individually developed synthesis strategies with atomic structural cont  ...[more]

Similar Datasets

| S-EPMC9029406 | biostudies-literature
| S-EPMC8748972 | biostudies-literature
| S-EPMC6096997 | biostudies-literature
| S-EPMC6839596 | biostudies-literature
| S-EPMC9418488 | biostudies-literature
| S-EPMC9059937 | biostudies-literature
| S-EPMC8179012 | biostudies-literature
| S-EPMC5428037 | biostudies-literature
| S-EPMC10869340 | biostudies-literature
| S-EPMC11336867 | biostudies-literature