Project description:Diseases of the pediatric nose and nasal sinuses as well as neighboring anatomical structures encompass a variety of pathologies, especially of inflammatory nature. Congenital disease, such as malformations and structural deviations of the nasal septum, as well as systemic metabolic pathologies affecting the nose and sinuses, rarely require medical therapy from an Otolaryngologist. The immunological function of the mucosa and genetic factors play a role in the development of disease in the pediatric upper airway tract, especially due to the constantly changing anatomy in this growth phase. Disease description of the nose and nasal sinuses due to mid-facial growth must also take developmental age differences (infant, toddler, preschool, and school age) into account. Epidemiological examinations and evidence based studies are often lacking in the pediatric population. The wide range of inflammatory diseases of the nose and paranasal sinuses, such as the acute and chronic rhinosinusitis, the allergic rhinitis, and adenoid disease, play a role in the susceptibility of a child to infection. The susceptibility to infection depends on the pediatric age structure (infant, young child) and has yet to be well defined. The acute rhinosinusitis in children develops after a viral infection of the upper airways, also referred to as the "common cold" in the literature. It usually spontaneously heals within ten days without any medical therapy. Antibiotic therapy is prudent in complicated episodes of ARS. The antibiotic therapy is reserved for children with complications or associated disease, such as bronchial asthma and/or chronic bronchitis. A chronic rhinosinusitis is defined as the inflammatory change in the nasal mucosa and nasal sinus mucosa, in which the corresponding symptoms persist for over 12 weeks. The indication for CT-imaging of the nasal sinuses is reserved for cases of chronic rhinosinusitis that have been successfully treated with medication. A staged therapeutic concept is followed in CRS based on conservative and surgical methods. Nasal sinus surgery is considered nowadays as effective and safe in children. Based on the assumption that adenoids are a reservoir for bacteria, from which recurrent infections of the nose and nasal sinus originate, the adenoidectomy is still defined as a cleansing procedure in rhinosinusitis. 69.3% of the children had benefit from adenoidectomy. Comorbidities, such as pediatric bronchial asthma, presently play an even more important role in the therapy of rhinosinusitis; therefore, it is often wise to have the support of pediatricians. In western European countries 40% of children presently suffer from allergic rhinitis, in which pronounced nasal obstruction can cause disturbed growth in facial bones. An early therapy with SIT may prevent the development of bronchial asthma and secondary sensitization to other allergens. Therefore, SIT is recommended in treatment of allergic rhinitis whenever, if possible. The assessment of diagnostic tools is for the examiner not often possible due to the lack of evidence. Rhinosurgical approaches are often described in study reports; however, they lack the standard prospective randomized long-term study design required nowadays and can only be evaluated with caution in the literature.
Project description:Solitary fibrous tumors (SFTs) are uncommon neoplasms of mesenchymal origin that were first described as primary spindle-cell tumors of the pleura in 1931. Since then, infrequent case reports of extrapleural SFTs have been described including various subsites within the head and neck. Based on a review of the literature and a description of the endoscopic treatment of three patients with SFTs of the nasal cavity and ethmoid sinuses, the challenges associated with the management of sinonasal SFTs are discussed. Successful endoscopic resection was performed at a tertiary referral rhinology practice within a university center in three cases of sinonasal SFTs with no evidence of recurrence at 26, 35, and 49 months following resection. Summarized are the common presenting symptoms, appropriate diagnostic workup, and indicative computed tomography and magnetic resonance imaging appearance of SFTs. Further discussed are the challenge associated with accurate histological and immunohistochemical diagnosis, the difficulty in assessing the aggressiveness and malignant potential of these lesions, and the appropriate treatment and follow-up duration that these neoplasms require.
Project description:BackgroundThe paranasal sinuses are complex anatomical structures, characterised by highly variable shape, morphology and size. With the introduction of multidetector scanners and the development of many post-processing possibilities, computed tomography became the gold standard technique to image the paranasal sinuses. Segmentation allows the extraction of metrical and shape data of these anatomical components that can be applied for diagnostic, education, surgical planning and simulation, and to plan minimally invasive interventions in otorhinolaryngology and neurosurgery.DiscussionOur aim was to provide a review of the existing literature on segmentation, its types and application, and the data obtained from this procedure. The literature search was conducted on PubMed (including Medline), ScienceDirect and Google Scholar databases, using the keywords as follows: 'paranasal sinuses', 'frontal sinus', 'maxillary sinus', 'sphenoid sinus', 'ethmoid sinus', in all possible combinations with the keywords 'segmentation' and 'volumetric analysis'. Inclusion criteria were: articles written in English, on living human subjects, on the adult population and focused on paranasal sinuses analysis.ConclusionThis article provides an overview of the types and main application of segmentation procedures on paranasal sinuses, and the results provided by the studies on this topic.
Project description:Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).
Project description:Delivering localized treatment to the paranasal sinuses for diseases such as chronic rhinosinusitis (CRS) is particularly challenging because of the small natural openings leading from the sinuses that can be further obstructed by presence of inflammation. As such, oral steroids, topical nasal sprays or irrigation, and surgery can be utilized to treat persistent sinonasal inflammation, but there exists a need for post-operative options for long-term steroid delivery to prevent disease recurrence. In the present study, a Thermogel, Extended-release Microsphere-based-delivery to the Paranasal Sinuses (TEMPS) is developed with the corticosteroid mometasone furoate. Specifically, the bioactive steroid is released for 4 weeks from poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a poly(N-isopropylacrylamide) (p-NIPAAm)-based hydrogel. The temperature-responsive system undergoes a reversible sol-gel transition at 34-35 °C such that it can be applied as a liquid at ambient temperature, conforming to the sinonasal epithelium as it gels. In a rabbit model of CRS, TEMPS was maintained in rabbit sinuses and effectively reduced sinonasal inflammation as characterized by micro-computed tomography and histopathology analysis. Ultimately, the combination of controlled release microspheres with a thermoresponsive hydrogel provides flexibility for encapsulating therapeutics in a reversible and conforming system for localized delivery to the sinuses.
Project description:Objectives To identify sinuses demonstrating postoperative radiographic mucosal thickening after endoscopic exposure of the cranial base through the transsphenoidal corridor. Design Retrospective review. Setting University-based medical center. Participants Patients undergoing endoscopic transnasal transsphenoidal approaches to the skull base who had both preoperative and postoperative imaging. Main Outcome Measures Change in preoperative and postoperative imaging scores for each sinus and side at 3 and 6 months. The left-sided undissected sinuses served as internal controls for comparison. Results Fifty-one patients were identified with the aforementioned inclusion and exclusion criteria. The mean difference in preoperative and postoperative imaging scores for the right anterior ethmoid sinus was significantly different from the left-sided equivalents (p = 0.0020). The difference in the frontal sinuses approached significance (p = 0.0625). Conclusions Resection of the lower half of the middle turbinate and maxillary antrostomy and harvest of a nasoseptal flap are associated with an increased radiographic incidence of mucosal thickening of the ipsilateral anterior ethmoids compared with the undissected contralateral side. When accessing the transnasal transsphenoidal corridor for skull base surgery, preservation of native anatomy is associated with a lower incidence of mucosal thickening on postoperative imaging.
Project description:BackgroundWith their Pan-American distribution, long-nosed armadillos (genus Dasypus) constitute an understudied model for Neotropical biogeography. This genus currently comprises seven recognized species, the nine-banded armadillo (D. novemcinctus) having the widest distribution ranging from Northern Argentina to the South-Eastern US. With their broad diversity of habitats, nine-banded armadillos provide a useful model to explore the effects of climatic and biogeographic events on morphological diversity at a continental scale.MethodsBased on a sample of 136 skulls of Dasypus spp. belonging to six species, including 112 specimens identified as D. novemcinctus, we studied the diversity and pattern of variation of paranasal cavities, which were reconstructed virtually using µCT-scanning or observed through bone transparency.ResultsOur qualitative analyses of paranasal sinuses and recesses successfully retrieved a taxonomic differentiation between the traditional species D. kappleri, D. pilosus and D. novemcinctus but failed to recover diagnostic features between the disputed and morphologically similar D. septemcinctus and D. hybridus. Most interestingly, the high variation detected in our large sample of D. novemcinctus showed a clear geographical patterning, with the recognition of three well-separated morphotypes: one ranging from North and Central America and parts of northern South America west of the Andes, one distributed across the Amazonian Basin and central South America, and one restricted to the Guiana Shield.DiscussionThe question as to whether these paranasal morphotypes may represent previously unrecognized species is to be evaluated through a thorough revision of the Dasypus species complex integrating molecular and morphological data. Remarkably, our recognition of a distinct morphotype in the Guiana Shield area is congruent with the recent discovery of a divergent mitogenomic lineage in French Guiana. The inflation of the second medialmost pair of caudal frontal sinuses constitutes an unexpected morphological diagnostic feature for this potentially distinct species. Our results demonstrate the benefits of studying overlooked internal morphological structures in supposedly cryptic species revealed by molecular data. It also illustrates the under-exploited potential of the highly variable paranasal sinuses of armadillos for systematic studies.
Project description:The opportunistic pathogen Pseudomonas aeruginosa is a frequent colonizer of the airways of patients suffering from cystic fibrosis (CF). Depending on early treatment regimens, the colonization will, with high probability, develop into chronic infections sooner or later, and it is important to establish under which conditions the switch to chronic infection takes place. In association with a recently established sinus surgery treatment program for CF patients at the Copenhagen CF Center, colonization of the paranasal sinuses with P. aeruginosa has been investigated, paralleled by sampling of sputum from the same patients. On the basis of genotyping and phenotypic characterization including transcription profiling, the diversity of the P. aeruginosa populations in the sinuses and the lower airways was investigated and compared. The observations made from several children show that the paranasal sinuses constitute an important niche for the colonizing bacteria in many patients. The paranasal sinuses often harbor distinct bacterial subpopulations, and in the early colonization phases there seems to be a migration from the sinuses to the lower airways, suggesting that independent adaptation and evolution take place in the sinuses. Importantly, before the onset of chronic lung infection, lineages with mutations conferring a large fitness benefit in CF airways such as mucA and lasR as well as small colony variants and antibiotic-resistant clones are part of the sinus populations. Thus, the paranasal sinuses potentially constitute a protected niche of adapted clones of P. aeruginosa, which can intermittently seed the lungs and pave the way for subsequent chronic lung infections.
Project description:Background/objectivesMucosal leishmaniasis (ML) is a progressive disease that affects cartilage and bone structures of the nose and other upper respiratory tract structures. Complications associated with ML have been described, but there is a lack of studies that evaluate the structural changes of the nose and paranasal sinuses in ML using radiological methods. In this study, we aimed to assess the opacification of the paranasal sinuses in patients with treated ML and any anatomical changes in the face associated with ML using multidetector computed tomography scans (MDCT) of the sinuses. We compared the findings with a control group.Methodology/principal findingsWe evaluated 54 patients with treated ML who underwent CT scans of the sinuses and compared them with a control group of 40 patients who underwent orbital CT scans. The degree of sinus disease was assessed according to the Lund-Mackay criteria. Forty of the 54 patients with a history of ML (74.1%) had a tomographic score compatible with chronic sinusitis (Lund-Mackay ≥4). CT scans in the leishmaniasis and control groups demonstrated significant differences in terms of facial structure alterations. Patients from the ML group showed more severe levels of partial opacification and pansinus mucosal thickening (42.6%) and a greater severity of total opacification. Patients from the ML group with a Lund-Mackay score ≥4 presented longer durations of disease before treatment and more severe presentations of the disease at diagnosis.Conclusion/significanceCT scans of the sinuses of patients with ML presented several structural alterations, revealing a prominent destructive feature of the disease. The higher prevalence in this study of chronic rhinosinusitis observed in CT scans of patients with treated ML than in those of the control group suggests that ML can be considered a risk factor for chronic rhinosinusitis in this population (p<0.05).
Project description:The bovine paranasal sinuses are a group of complex cavernous air-filled spaces, lined by respiratory epithelium, the exact function of which is unclear. While lesions affecting these sinuses are occasionally reported in cattle, their microbial flora has not been defined. Furthermore, given that the various bacterial and viral pathogens causing bovine respiratory disease (BRD) persist within herds, we speculated that the paranasal sinuses may serve as a refuge for such infectious agents. The paranasal sinuses of clinically normal cattle (n = 99) and of cattle submitted for post-mortem examination (PME: n = 34) were examined by microbial culture, PCR and serology to include bacterial and viral pathogens typically associated with BRD: Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica and Pasteurella multocida, bovine respiratory syncytial virus (BRSV) and bovine parainfluenza-3 virus (BPIV-3). Overall, the paranasal sinuses were either predominantly sterile or did not contain detectable microbes (83.5%: 94.9% of clinically normal and 50.0% of cattle submitted for PME). Bacteria, including BRD causing pathogens, were identified in relatively small numbers of cattle (<10%). While serology indicated widespread exposure of both clinically normal and cattle submitted for PME to BPIV-3 and BRSV (seroprevalences of 91.6% and 84.7%, respectively), PCR identified BPIV-3 in only one animal. To further explore these findings we investigated the potential role of the antimicrobial molecule nitric oxide (NO) within paranasal sinus epithelium using immunohistochemistry. Expression of the enzyme responsible for NO synthesis, inducible nitric oxide synthase (iNOS), was detected to varying degrees in 76.5% of a sub-sample of animals suggesting production of this compound plays a similar protective role in the bovine sinus as it does in humans.