Project description:Parasitic hookworms and the free-living model nematode Caenorhabtidis elegans share a developmental arrested stage, called the dauer stage in C. elegans and the infective third-stage larva (L3) in hookworms. One of the key transcription factors that regulate entrance to and exit from developmental arrest is the forkhead transcription factor DAF-16/FoxO. During the dauer stage, DAF-16 is activated and localized in the nucleus. DAF-16 is negatively regulated by phosphorylation by the upstream kinase AKT, which causes DAF-16 to localize out of the nucleus and the worm to exit from dauer. DAF-16 is conserved in hookworms, and hypothesized to control recovery from L3 arrest during infection. Lacking reverse genetic techniques for use in hookworms, we used C. elegans complementation assays to investigate the function of Ancylostoma caninum DAF-16 during entrance and exit from L3 developmental arrest. We performed dauer switching assays and observed the restoration of the dauer phenotype when Ac-DAF-16 was expressed in temperature-sensitive dauer defective C. elegans daf-2(e1370);daf-16(mu86) mutants. AKT phosphorylation site mutants of Ac-DAF-16 were also able to restore the dauer phenotype, but surprisingly allowed dauer exit when temperatures were lowered. We used fluorescence microscopy to localize DAF-16 during dauer and exit from dauer in C. elegans DAF-16 mutant worms expressing Ac-DAF-16, and found that Ac-DAF-16 exited the nucleus during dauer exit. Surprisingly, Ac-DAF-16 with mutated AKT phosphorylation sites also exited the nucleus during dauer exit. Our results suggest that another mechanism may be involved in the regulation DAF-16 nuclear localization during recovery from developmental arrest.
Project description:We report a case of hookworm-related cutaneous larva migrans diagnosed microscopically. Viable hookworm larvae were found by microscopic examination of a skin scraping from follicular lesions. Amplification and sequencing of the internal transcribed spacer 2 allowed the specific identification of the larvae as Ancylostoma braziliense.
Project description:Hookworm disease caused by Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum affects half a billion people worldwide. The prevalence and intensity of infection of individual hookworm species are vital for assessing morbidity and generating targeted intervention programs for their control. The present study aims to evaluate a multiplex real-time quantitative PCR (qPCR) assay to determine the prevalence and egg intensity of all three hookworm species and compare this with standard microscopy and published genus-based conventional and real-time multiplex qPCRs. Performance of the diagnostic assays was evaluated using DNA extracted from 192 fecal samples collected as part of a soil-transmitted helminth (STH) survey in northern Cambodia. The prevalence of hookworms as detected by the multiplex hookworm qPCR of 84/192 (43.8%) was significantly higher than that using microscopy of 49/192 (25.5%). The hookworm multiplex qPCR showed very good agreement for the detection of both N. americanus (Kappa 0.943) and Ancylostoma spp. (Kappa 0.936) with a multiplex STH qPCR. A strong and moderate quantitative correlation between cycle threshold and eggs per gram (EPG) feces was obtained for the hookworm qPCR for seeded DNA egg extracts (R 2 ? 0.9004) and naturally egg-infected individuals (R 2 = 0.6848), respectively. The newly developed hookworm quantitative multiplex qPCR has the potential for application in anthelmintic efficacy trials and for monitoring the success of mass deworming programs targeting individual species of anthroponotic and zoonotic hookworms.
Project description:Recent advances in the field of host immunity against parasitic nematodes have revealed the importance of macrophages in trapping tissue migratory larvae. Protective immune mechanisms against the rodent hookworm Nippostrongylus brasiliensis (Nb) are mediated, at least in part, by IL-4-activated macrophages that bind and trap larvae in the lung. However, it is still not clear how host macrophages recognize the parasite. An in vitro co-culture system of bone marrow-derived macrophages and Nb infective larvae was utilized to screen for the possible ligand-receptor pair involved in macrophage attack of larvae. Competitive binding assays revealed an important role for β-glucan recognition in the process. We further identified a role for CD11b and the non-classical pattern recognition receptor ephrin-A2 (EphA2), but not the highly expressed β-glucan dectin-1 receptor, in this process of recognition. This work raises the possibility that parasitic nematodes synthesize β-glucans and it identifies CD11b and ephrin-A2 as important pattern recognition receptors involved in the host recognition of these evolutionary old pathogens. To our knowledge, this is the first time that EphA2 has been implicated in immune responses to a helminth.
Project description:BackgroundAn accurate diagnosis of helminth infection is important to improve patient management. However, there is considerable intra- and inter-specimen variation of helminth egg counts in human feces. Homogenization of stool samples has been suggested to improve diagnostic accuracy, but there are no detailed investigations. Rapid disintegration of hookworm eggs constitutes another problem in epidemiological surveys. We studied the spatial distribution of Schistosoma mansoni and hookworm eggs in stool samples, the effect of homogenization, and determined egg counts over time in stool samples stored under different conditions.MethodologyWhole-stool samples were collected from 222 individuals in a rural part of south Côte d'Ivoire. Samples were cut into four pieces and helminth egg locations from the front to the back and from the center to the surface were analyzed. Some samples were homogenized and fecal egg counts (FECs) compared before and after homogenization. The effect of stool storing methods on FECs was investigated over time, comparing stool storage on ice, covering stool samples with a water-soaked tissue, or keeping stool samples in the shade.Principal findingsWe found no clear spatial pattern of S. mansoni and hookworm eggs in fecal samples. Homogenization decreased S. mansoni FECs (p?=?0.026), while no effect was observed for hookworm and other soil-transmitted helminths. Hookworm FECs decreased over time. Storing stool samples on ice or covered with a moist tissue slowed down hookworm egg decay (p<0.005).Conclusions/significanceOur findings have important implications for helminth diagnosis at the individual patient level and for epidemiological surveys, anthelmintic drug efficacy studies and monitoring of control programs. Specifically, homogenization of fecal samples is recommended for an accurate detection of S. mansoni eggs, while keeping collected stool samples cool and moist delayed the disintegration of hookworm eggs.
Project description:HT-29-MTX cells were treated with Ancylostoma ceylanicum hookworm larvae or left untreated. The differences in gene expression between treated and untreated samples was observed.
Project description:Strongyloidiasis is a neglected tropical disease caused by the soil-transmitted nematode by Strongyloides stercoralis, that affects approximately 600 million people worldwide. In immunosuppressed individuals disseminated strongyloidiasis can rapidly lead to fatal outcomes. There is no gold standard for diagnosing strongyloidiasis, and infections are frequently misdiagnosed. A better understanding of the molecular biology of this parasite can be useful for example for the discovery of potential new biomarkers. Interestingly, recent evidence showed the presence of small RNAs in Strongyloididae, but no data was provided for S. stercoralis. In this study, we present the first identification of miRNAs of both L1 and iL3 larval stages of S. stercoralis. For our purpose, the aims were: (i) to analyse the miRNome of L1 and iL3 S. stercoralis and to identify potential miRNAs of this nematode, (ii) to obtain the mRNAs profiles in these two larval stages and (iii) to predict potential miRNA target sites in mRNA sequences. Total RNA was isolated from L1 and iL3 collected from the stool of 5 infected individuals. For the miRNAs analysis, we used miRDeep2 software and a pipeline of bio-informatic tools to construct a catalog of a total of 385 sequences. Among these, 53% were common to S. ratti, 19% to S. papillosus, 1% to Caenorhabditis elegans and 44% were novel. Using a differential analysis between the larval stages, we observed 6 suggestive modulated miRNAs (STR-MIR-34A-3P, STR-MIR-8397-3P, STR-MIR-34B-3P and STR-MIR-34C-3P expressed more in iL3, and STR-MIR-7880H-5P and STR-MIR-7880M-5P expressed more in L1). Along with this analysis, we obtained also the mRNAs profiles in the same samples of larvae. Multiple testing found 81 statistically significant mRNAs of the total 1553 obtained (FDR < 0.05; 32 genes expressed more in L1 than iL3; 49 genes expressed more in L3 than iL1). Finally, we found 33 predicted mRNA targets of the modulated miRNAs, providing relevant data for a further validation to better understand the role of these small molecules in the larval stages and their valuein clinical diagnostics.
Project description:The screening of candidate compounds and natural products for anthelmintic activity is important for discovering new drugs against human and animal parasites. We previously validated in Caenorhabditis elegans a microfluidic device ('chip') that records non-invasively the tiny electrophysiological signals generated by rhythmic contraction (pumping) of the worm's pharynx. These electropharyngeograms (EPGs) are recorded simultaneously from multiple worms per chip, providing a medium-throughput readout of muscular and neural activity that is especially useful for compounds targeting neurotransmitter receptors and ion channels. Microfluidic technologies have transformed C. elegans research and the goal of the current study was to validate hookworm and Ascaris suum host-stage larvae in the microfluidic EPG platform. Ancylostoma ceylanicum and A. caninum infective L3s (iL3s) that had been activated in vitro generally produced erratic EPG activity under the conditions tested. In contrast, A. ceylanicum L4s recovered from hamsters exhibited robust, sustained EPG activity, consisting of three waveforms: (1) conventional pumps as seen in other nematodes; (2) rapid voltage deflections, associated with irregular contractions of the esophagus and openings of the esophogeal-intestinal valve (termed a 'flutter'); and (3) hybrid waveforms, which we classified as pumps. For data analysis, pumps and flutters were combined and termed EPG 'events.' EPG waveform identification and analysis were performed semi-automatically using custom-designed software. The neuromodulator serotonin (5-hydroxytryptamine; 5HT) increased EPG event frequency in A. ceylanicum L4s at an optimal concentration of 0.5 mM. The anthelmintic drug ivermectin (IVM) inhibited EPG activity in a concentration-dependent manner. EPGs from A. suum L3s recovered from pig lungs exhibited robust pharyngeal pumping in 1 mM 5HT, which was inhibited by IVM. These experiments validate the use of A. ceylanicum L4s and A. suum L3s with the microfluidic EPG platform, providing a new tool for screening anthelmintic candidates or investigating parasitic nematode feeding behavior.
Project description:BackgroundMicroscopy-based identification of eggs in stool offers simple, reliable and economical options for assessing the prevalence and intensity of hookworm infections, and for monitoring the success of helminth control programs. This study was conducted to evaluate and compare the diagnostic parameters of the Kato-Katz (KK) and simple sodium nitrate flotation technique (SNF) in terms of detection and quantification of hookworm eggs, with PCR as an additional reference test in stool, collected as part of a baseline cross-sectional study in Cambodia.Methods/principle findingsFecal samples collected from 205 people in Dong village, Rovieng district, Preah Vihear province, Cambodia were subjected to KK, SNF and PCR for the detection (and in case of microscopy-based methods, quantification) of hookworm eggs in stool. The prevalence of hookworm detected using a combination of three techniques (gold standard) was 61.0%. PCR displayed a highest sensitivity for hookworm detection (92.0%) followed by SNF (44.0%) and quadruple KK smears (36.0%) compared to the gold standard. The overall eggs per gram feces from SNF tended to be higher than for quadruple KK and the SNF proved superior for detecting low egg burdens.Conclusion/significanceAs a reference, PCR demonstrated the higher sensitivity compared to SNF and the quadruple KK method for detection of hookworm in human stool. For microscopic-based quantification, a single SNF proved superior to the quadruple KK for the detection of hookworm eggs in stool, in particular for low egg burdens. In addition, the SNF is cost-effective and easily accessible in resource poor countries.
Project description:Background:Controlled human hookworm infection (CHHI) is a central component of a proposed hookworm vaccination-challenge model (HVCM) to test the efficacy of candidate vaccines. Critical to CHHI is the manufacture of Necator americanus infective larvae (NaL3) according to current Good Manufacturing Practice (cGMP) and the determination of an inoculum of NaL3 that is safe and reliably induces patent infection. Methods:cGMP-grade NaL3 were produced for a phase 1 trial in 20 healthy, hookworm-naïve adults in the United States, who received either 25 or 50 NaL3. Participants were monitored for 12-18 weeks postinfection for safety, tolerability, and patency of N. americanus infection. Results:Both NaL3 doses were well tolerated. Early manifestations of infection included pruritus, pain, and papulovesicular rash at the application site. Gastrointestinal symptoms and eosinophilia appeared after week 4 postinfection. The 50 NaL3 inoculum induced patent N. americanus infection in 90% of this dose group. Conclusions:The inoculum of 50 NaL3 was well tolerated and consistently induced patent N. americanus infection suitable for future HVCM trials. Clinical Trials Registration:NCT01940757.