Micro-patterned deposition of MoS2 ultrathin-films by a controlled droplet dragging approach.
Ontology highlight
ABSTRACT: Micropatterning of transition metal dichalcogenide (TMDC) ultrathin-films and monolayers has been demonstrated by various multi-step approaches. However, directly achieving a patterned growth of TMDC films is still considered to be challenging. Here, we report a solution-based approach for the synthesis of patterned MoS2 layers by dragging a precursor solution droplet with variable velocities across a substrate. Utilizing the pronounced shearing velocity dependence in a Landau-Levich deposition regime, MoS2 films with a spatially modulated thickness with alternating mono/bi- and few-layer regions are obtained after precursor annealing. Generally, the presented facile methodology allows for the direct preparation of micro-structured functional materials, extendable to other TMDC materials and even van der Waals heterostructures.
SUBMITTER: Pareek D
PROVIDER: S-EPMC8263556 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA