Project description:Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome's transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.
Project description:Hereditary neuropathies represent approximately 40% of undiagnosed neuropathies in a tertiary clinic setting. The Charcot-Marie-Tooth neuropathies (CMT) are the most common. Mutations in more than 40 genes have been identified to date in CMT. Approximately 50% of CMT cases are accounted for by CMT type 1A, due to a duplication within the peripheral myelin protein 22 gene (PMP22). Mutations in the gap junction beta 1 gene (GJB1), the myelin protein zero gene (MPZ), and the mitofusin 2 gene (MFN2) account for a substantial proportion of other genetically definable CMT. Some 15% of demyelinating CMT and 70% of axonal CMT await genetic clarification. Other hereditary neuropathies include the hereditary sensory and autonomic neuropathies, the familial amyloid polyneuropathies, and multisystem disorders (e.g., lipid storage diseases and inherited ataxias) that have peripheral neuropathy as a major or minor component. This review surveys the challenges of developing effective therapies for hereditary neuropathies in terms of past, present, and future experimental therapeutics in CMT.
Project description:Background and aimsThis review aims to summarize current and emerging therapies for treatment of thyroid eye disease (TED), in the light of novel understanding of pathogenetic mechanisms, leading to new treatment options and clinical trials.MethodsWe reviewed and analyzed peer-reviewed literature reporting recent translational studies and clinical trials in the treatment of TED. Searches were made at www.pubmed.gov with keywords "thyroid eye disease," "Graves' ophthalmopathy," "thyroid orbitopathy," and "Graves' orbitopathy."ResultsSurgery is reserved for rehabilitation in chronic TED or for emergent compressive optic neuropathy. Oral and intravenous glucocorticoid therapy has been used for decades with variable efficacy in acute TED, but results may be temporary and side effects significant. Nonsteroidal oral immunosuppressive agents offer modest benefit in TED. Several immunomodulatory monoclonal antibodies, including rituximab and tocilizumab, have shown efficacy for inactivating TED. Recently, teprotumumab, an insulin-like growth factor 1 receptor (IGF-1R) inhibitor, has demonstrated significant improvement in proptosis, clinical activity score, diplopia, and quality of life in patients with active TED, with good tolerability. Newly proposed TED therapies, currently in preclinical and clinical trial phases, include thyroid-stimulating hormone (TSH) receptor inhibitory drugs, RVT-1401, local anti-vascular endothelial growth factor therapy, IGF-1R drugs delivered subcutaneously and orally, and desensitization to the TSH receptor with modified TSH receptor peptides.ConclusionNew, albeit incomplete, understanding of the molecular mechanisms of TED has led to new promising therapies and offered improved outcomes in TED patients. Their full role and their relationship to classical immune suppression should be clarified over the next few years.
Project description:Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Project description:Verapamil is a phenylalkylamine class calcium channel blocker that for half a century has been used for the treatment of cardiovascular diseases. Nowadays, verapamil is also considered as a drug option for the treatment of several neurological and psychiatric disorders, such as cluster headache, bipolar disorders, epilepsy, and neurodegenerative diseases. Here, we review insights into the potential preventive and therapeutic role of verapamil on Alzheimer's disease (AD) based on limited experimental and clinical data. Pharmacological studies have shown that verapamil has a wide therapeutic spectrum, including antihypertensive, anti-inflammatory, and antioxidative effects, regulation of the blood-brain barrier function, due to its effect on P-glycoprotein, as well as adjustment of cellular calcium homeostasis, which may result in the delay of AD onset or ameliorate the symptoms of patients. However, the majority of the AD individuals are on polypharmacotherapy, and the interactions between verapamil and other drugs need to be considered. Therefore, for an appropriate and successful AD treatment, a personalized approach is more than necessary. A well-known narrow pharmacological window of verapamil efficacy may hinder this approach. It is therefore important to note that the verapamil efficacy may be conditioned by different factors. The onset, grade, and brain distribution of AD pathological hallmarks, the time-sequential appearances of AD-related cognitive and behavioral dysfunction, the chronobiologic and gender impact on calcium homeostasis and AD pathogenesis may somehow be influencing that success. In the future, such insights will be crucial for testing the validity of verapamil treatment on animal models of AD and clinical approaches.
Project description:The epidemiology, genetics, and clinical manifestations of Crohn's disease (CD) vary considerably among geographic areas and ethnic groups. Thus, identifying the characteristics of Korean CD is important for establishing management strategies appropriate for Korean patients. Since the mid-2000s, many studies have investigated the characteristic features of Korean CD. The incidence and prevalence rates of CD have been increasing rapidly in Korea, especially among the younger population. Unlike Western data, Korean CD shows a male predominance and a lower proportion of isolated colonic disease. Perianal lesions are more prevalent than in Western countries. Genome-wide association studies have confirmed that genetic variants in TNFSF15, IL-23R, and IRGM, but not ATG16L1, are associated with CD susceptibility in the Korean population. Studies of the associations between genetic mutations and the clinical course of CD are underway. Although it has been generally accepted that the clinical course of Korean CD is milder than that in Western countries, recent studies have shown a comparable rate of intestinal resection in Korean and Western CD patients. An ongoing nationwide, hospital-based cohort study is anticipated to provide valuable information on the natural history and prognosis of Korean CD in the near future.
Project description:Alzheimer's disease (AD) is an incurable, progressive, neurodegenerative disorder affecting over 5 million people in the US alone. This neurological disorder is characterized by widespread neurodegeneration throughout the association cortex and limbic system caused by deposition of A? resulting in the formation of plaques and tau resulting in the formation of neurofibrillary tangles. Active immunization for A? showed promise in animal models of AD; however, the models were unable to predict the off-target immune effects in human patients. A few patients in the initial trial suffered cerebral meningoencephalitis. Recently, passive immunization has shown promise in the lab with less chance of off-target immune effects. Several trials have attempted using passive immunization for A?, but again, positive end points have been elusive. The next generation of immunotherapy for AD may involve the marriage of anti-A? antibodies with technology aimed at improving transport across the blood-brain barrier (BBB). Receptor mediated transport of antibodies may increase CNS exposure and improve the therapeutic index in the clinic.
Project description:Liver transplantation represents the standard treatment for people with an end-stage liver disease and some liver-based metabolic disorders; however, shortage of liver donor tissues limits its availability. Furthermore, whole liver replacement eliminates the possibility of using native liver as a possible target for future gene therapy in case of liver-based metabolic defects. Cell therapy has emerged as a potential alternative, as cells can provide the hepatic functions and engraft in the liver parenchyma. Various options have been proposed, including human or other species hepatocytes, hepatocyte-like cells derived from stem cells or more futuristic alternatives, such as combination therapies with different cell types, organoids and cell-biomaterial combinations. In this review, we aim to give an overview of the cell therapies developed so far, highlighting preclinical and/or clinical achievements as well as the limitations that need to be overcome to make them fully effective and safe for clinical applications.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Project description:Recent advances of biological drugs have broadened the scope of therapeutic targets for a variety of human diseases. This holds true for dozens of RNA-based therapeutics currently under clinical investigation for diseases ranging from genetic disorders to HIV infection to various cancers. These emerging drugs, which include therapeutic ribozymes, aptamers, and small interfering RNAs (siRNAs), demonstrate the unprecedented versatility of RNA. However, RNA is inherently unstable, potentially immunogenic, and typically requires a delivery vehicle for efficient transport to the targeted cells. These issues have hindered the clinical progress of some RNA-based drugs and have contributed to mixed results in clinical testing. Nevertheless, promising results from recent clinical trials suggest that these barriers may be overcome with improved synthetic delivery carriers and chemical modifications of the RNA therapeutics. This review focuses on the clinical results of siRNA, RNA aptamer, and ribozyme therapeutics and the prospects for future successes.
Project description:The discovery, only a decade ago, of the genome editing power of clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases is already reinventing the therapeutic process, from how new drugs are discovered to novel ways to treat diseases. CRISPR-based screens can aid therapeutic development by quickly identifying a drug's mechanism of action and escape mutants. Additionally, CRISPR-Cas has advanced emerging ex vivo therapeutics, such as cell replacement therapies. However, Cas9 is limited as an in vivo therapeutic due to ineffective delivery, unwanted immune responses, off-target effects, unpredictable repair outcomes, and cellular stress. To address these limitations, controls that inhibit or degrade Cas9, biomolecule-Cas9 conjugates, and base editors have been developed. Herein, we discuss CRISPR-Cas systems that advance both conventional and emerging therapeutics.