A Highly Selective Turn-On Fluorescent Probe for the Detection of Zinc.
Ontology highlight
ABSTRACT: A novel turn-on fluorescence probe L has been designed that exhibits high selectivity and sensitivity with a detection limit of 9.53 × 10-8 mol/L for the quantification of Zn2+. 1H-NMR spectroscopy and single crystal X-ray diffraction analysis revealed the unsymmetrical nature of the structure of the Schiff base probe L. An emission titration experiment in the presence of different molar fractions of Zn2+ was used to perform a Job's plot analysis. The results showed that the stoichiometric ratio of the complex formed by L and Zn2+ was 1:1. Moreover, the molecular structure of the mononuclear Cu complex reveals one ligand L coordinates with one Cu atom in the asymmetric unit. On adding CuCl2 to the ZnCl2/L system, a Cu-Zn complex was formed and a strong quenching behavior was observed, which inferred that the Cu2+ displaced Zn2+ to coordinate with the imine nitrogen atoms and hydroxyl oxygen atoms of probe L.
SUBMITTER: Shen LY
PROVIDER: S-EPMC8270291 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA