The fluid shear stress sensor TRPM7 regulates tumor cell intravasation.
Ontology highlight
ABSTRACT: Tumor cell intravasation preferentially occurs in regions of low fluid shear because high shear is detrimental to tumor cells. Here, we describe a molecular mechanism by which cells avoid high shear during intravasation. The transition from migration to intravasation was modeled using a microfluidic device where cells migrating inside longitudinal tissue-like microchannels encounter an orthogonal channel in which fluid flow induces physiological shear stresses. This approach was complemented with intravital microscopy, patch-clamp, and signal transduction imaging techniques. Fluid shear-induced activation of the transient receptor potential melastatin 7 (TRPM7) channel promotes extracellular calcium influx, which then activates RhoA/myosin-II and calmodulin/IQGAP1/Cdc42 pathways to coordinate reversal of migration direction, thereby avoiding shear stress. Cells displaying higher shear sensitivity due to higher TRPM7 activity levels intravasate less efficiently and establish less invasive metastatic lesions. This study provides a mechanistic interpretation for the role of shear stress and its sensor, TRPM7, in tumor cell intravasation.
Project description:Microsystems designed for cell-based studies or applications inherently require fluid handling. Flows within such systems inevitably generate fluid shear stress (FSS) that may adversely affect cell health. Simple assays of cell viability, morphology or growth are typically reported to indicate any gross disturbances to cell physiology. However, no straightforward metric exists to specifically evaluate physiological implications of FSS within microfluidic devices, or among competing microfluidic technologies. This paper presents the first genetically encoded cell sensors that fluoresce in a quantitative fashion upon FSS pathway activation. We picked a widely used cell line (NIH3T3s) and created a transcriptional cell-sensor where fluorescence turns on when transcription of a relevant FSS-induced protein is initiated. Specifically, we chose Early Growth Factor-1 (a mechanosensitive protein) upregulation as the node for FSS detection. We verified our sensor pathway specificity and functionality by noting induced fluorescence in response to chemical induction of the FSS pathway, seen both through microscopy and flow cytometry. Importantly, we found our cell sensors to be inducible by a range of FSS intensities and durations, with a limit of detection of 2 dynes cm(-2) when applied for 30 minutes. Additionally, our cell-sensors proved their versatility by showing induction sensitivity when made to flow through an inertial microfluidic device environment with typical flow conditions. We anticipate these cell sensors to have wide application in the microsystems community, allowing the device designer to engineer systems with acceptable FSS, and enabling the end-user to evaluate the impact of FSS upon their assay of interest.
Project description:The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm(2) triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell-cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell-cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density.
Project description:Cell migration is highly sensitive to fluid shear stress (FSS) in blood flow or interstitial fluid flow. However, whether the FSS gradient can regulate the migration of cells remains unclear. In this work, we constructed a parallel-plate flow chamber with different FSS gradients and verified the gradient flow field by particle image velocimetry measurements and finite element analyses. We then investigated the effect of FSS magnitudes and gradients on the migration of osteoclast precursor RAW264.7 cells. Results showed that the cells sensed the FSS gradient and migrated toward the low-FSS region. This FSS gradient-induced migration tended to occur in low-FSS magnitudes and high gradients, e.g., the migration angle relative to flow direction was approximately 90° for 0.1 Pa FSS and 0.2 Pa mm-1 FSS gradient. When chemically inhibiting the calcium signaling pathways of the mechanosensitive cation channel, endoplasmic reticulum, phospholipase C, and extracellular calcium, the cell migration toward the low-FSS region was significantly reduced. This study may provide insights into the mechanism of the recruitment of osteoclast precursors at the site of bone resorption and of mechanical stimulation-induced bone remodeling.
Project description:Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs.
Project description:Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis.
Project description:Endothelial cell alignment along the direction of laminar fluid flow is widely understood to be a defining morphological feature of vascular homeostasis. While the role of associated signaling and structural events have been well studied, associated intercellular stresses under laminar fluid shear have remained ill-defined and the role of these stresses in the alignment process has remained obscure. To fill this gap, we report here the tractions as well as the complete in-plane intercellular stress fields measured within the human umbilical vein endothelial cell (HUVEC) monolayer subjected to a steady laminar fluid shear of 1 Pa. Tractions, intercellular stresses, as well as their time course, heterogeneity, and anisotropy, were measured using monolayer traction microscopy and monolayer stress microscopy. Prior to application of laminar fluid flow, intercellular stresses were largely tensile but fluctuated dramatically in space and in time (317 ± 122 Pa). Within 12 h of the onset of laminar fluid flow, the intercellular stresses decreased substantially but continued to fluctuate dramatically (142 ± 84 Pa). Moreover, tractions and intercellular stresses aligned strongly and promptly (within 1 h) along the direction of fluid flow, whereas the endothelial cell body aligned less strongly and substantially more slowly (12 h). Taken together, these results reveal that steady laminar fluid flow induces prompt reduction in magnitude and alignment of tractions and intercellular stress tensor components followed by the retarded elongation and alignment of the endothelial cell body. Appreciably smaller intercellular stresses supported by cell-cell junctions logically favor smaller incidence of gap formation and thus improved barrier integrity.
Project description:BackgroundT cell activation is a mechanical process as much as it is a biochemical process. In this study, we used a cone-and-plate viscometer system to treat Jurkat and primary human T cells with fluid shear stress (FSS) to enhance the activation of the T cells through mechanical means.ResultsThe FSS treatment of T cells in combination with soluble and bead-bound CD3/CD28 antibodies increased the activation of signaling proteins essential for T cell activation, such as zeta-chain-associated protein kinase-70 (ZAP70), nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), and AP-1 (activator protein 1). The FSS treatment also enhanced the expression of the cytokines tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2), and interferon gamma (IFN-γ), which are necessary for sustained T cell activation and function. The enhanced activation of T cells by FSS was calcium dependent. The calcium signaling was controlled by the mechanosensitive ion channel Piezo1, as GsMTx-4 and Piezo1 knockout reduced ZAP70 phosphorylation by FSS.ConclusionsThese results demonstrate an intriguing new dynamic to T cell activation, as the circulatory system consists of different magnitudes of FSS and could have a proinflammatory role in T cell function. The results also identify a potential pathophysiological relationship between T cell activation and FSS, as hypertension is a disease characterized by abnormal blood flow and is correlated with multiple autoimmune diseases.
Project description:Fluid induced shear stress is widely recognized as an important biophysical signal in cell-cell mechanotransduction. To identify cellular signaling pathways that are regulated by fluid shear stress, we applied the unbiased approach of transcriptional profiling. Our cDNA array analysis detected that 1165 of the 6288 sampled unigenes were significantly affected by pulsatile fluid flow. GenMapp 2.1 analysis revealed pathways of genes regulated by shear stress: angiogenesis, blood vessel morphogenesis, regulation of endothelial cell proliferation and prostaglandin biosynthesis. Individual genes significantly up-/down-regulated by shear stress included vascular endothelial growth factor A (VEGFa), cysteine rich protein 61 (CRY61), platelet derived growth factor, alpha (PDGFa), connective tissue growth factor (CTGF), Neuropilin 1 (NRP1), angiotensin II receptor, type 1a (AGTR1a) and fibroblast growth factor 1 (FGF1). Based on these findings, we hypothesize that fluid shear stress regulated VEGF most likely stimulates MC3T3-E1 cells through autocrine/paracrine release and may provide a powerful recruitment signal for osteoclasts, endothelial cells and/or stem cells during bone remodeling. Keywords: stress response
Project description:Mechanical stress is pervasive in egress routes of malignancy, yet the intrinsic effects of force on tumour cells remain poorly understood. Here, we demonstrate that frictional force characteristic of flow in the lymphatics stimulates YAP1 to drive cancer cell migration; whereas intensities of fluid wall shear stress (WSS) typical of venous or arterial flow inhibit taxis. YAP1, but not TAZ, is strictly required for WSS-enhanced cell movement, as blockade of YAP1, TEAD1-4 or the YAP1-TEAD interaction reduces cellular velocity to levels observed without flow. Silencing of TEAD phenocopies loss of YAP1, implicating transcriptional transactivation function in mediating force-enhanced cell migration. WSS dictates expression of a network of YAP1 effectors with executive roles in invasion, chemotaxis and adhesion downstream of the ROCK-LIMK-cofilin signalling axis. Altogether, these data implicate YAP1 as a fluid mechanosensor that functions to regulate genes that promote metastasis.
Project description:In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (?10 mg/mL protein concentration).