Efficacy of a Covalent Microtubule Stabilizer in Taxane-Resistant Ovarian Cancer Models.
Ontology highlight
ABSTRACT: Ovarian cancer often has a poor clinical prognosis because of late detection, frequently after metastatic progression, as well as acquired resistance to taxane-based therapy. Herein, we evaluate a novel class of covalent microtubule stabilizers, the C-22,23-epoxytaccalonolides, for their efficacy against taxane-resistant ovarian cancer models in vitro and in vivo. Taccalonolide AF, which covalently binds β-tubulin through its C-22,23-epoxide moiety, demonstrates efficacy against taxane-resistant models and shows superior persistence in clonogenic assays after drug washout due to irreversible target engagement. In vivo, intraperitoneal administration of taccalonolide AF demonstrated efficacy against the taxane-resistant NCI/ADR-RES ovarian cancer model both as a flank xenograft, as well as in a disseminated orthotopic disease model representing localized metastasis. Taccalonolide-treated animals had a significant decrease in micrometastasis of NCI/ADR-RES cells to the spleen, as detected by quantitative RT-PCR, without any evidence of systemic toxicity. Together, these findings demonstrate that taccalonolide AF retains efficacy in taxane-resistant ovarian cancer models in vitro and in vivo and that its irreversible mechanism of microtubule stabilization has the unique potential for intraperitoneal treatment of locally disseminated taxane-resistant disease, which represents a significant unmet clinical need in the treatment of ovarian cancer patients.
SUBMITTER: Yee SS
PROVIDER: S-EPMC8271594 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA