Unknown

Dataset Information

0

Wetting Simulations of High-Performance Polymer Resins on Carbon Surfaces as a Function of Temperature Using Molecular Dynamics.


ABSTRACT: Resin/reinforcement wetting is a key parameter in the manufacturing of carbon nanotube (CNT)-based composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. As experimental measurement of contact angle can be difficult when screening multiple high-performance resins with CNT materials such as CNT bundles or yarns, computational approaches are necessary to facilitate CNT composite material design. A molecular dynamics simulation method is developed to predict the contact angle of high-performance polymer resins on CNT surfaces dominated by aromatic carbon, aliphatic carbon, or a mixture thereof (amorphous carbon). Several resin systems are simulated and compared. The results indicate that the monomer chain length, chemical groups on the monomer, and simulation temperature have a significant impact on the predicted contact angle values on the CNT surface. Difunctional epoxy and cyanate ester resins show the overall highest levels of wettability, regardless of the aromatic/aliphatic nature of the CNT material surface. Tetrafunctional epoxy demonstrates excellent wettability on aliphatic-dominated surfaces at elevated temperatures. Bismaleimide and benzoxazine resins show intermediate levels of wetting, while typical molecular weights of polyether ether ketone demonstrate poor wetting on the CNT surfaces.

SUBMITTER: Bamane SS 

PROVIDER: S-EPMC8271784 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5640498 | biostudies-literature
| S-EPMC8401719 | biostudies-literature
| S-EPMC5331294 | biostudies-literature
| S-EPMC5993231 | biostudies-literature
| S-EPMC546015 | biostudies-literature
| S-EPMC5294566 | biostudies-literature
| S-EPMC5159747 | biostudies-literature
| S-EPMC1877756 | biostudies-literature
| S-EPMC4735807 | biostudies-literature
| S-EPMC8474114 | biostudies-literature