Ontology highlight
ABSTRACT: Background
Assessment of risks of illnesses has been an important part of medicine for decades. We now have hundreds of 'risk calculators' for illnesses, including brain disorders, and these calculators are continually improving as more diverse measures are collected on larger samples.Methods
We first replicated an existing psychosis risk calculator and then used our own sample to develop a similar calculator for use in recruiting 'psychosis risk' enriched community samples. We assessed 632 participants age 8-21 (52% female; 48% Black) from a community sample with longitudinal data on neurocognitive, clinical, medical, and environmental variables. We used this information to predict psychosis spectrum (PS) status in the future. We selected variables based on lasso, random forest, and statistical inference relief; and predicted future PS using ridge regression, random forest, and support vector machines.Results
Cross-validated prediction diagnostics were obtained by building and testing models in randomly selected sub-samples of the data, resulting in a distribution of the diagnostics; we report the mean. The strongest predictors of later PS status were the Children's Global Assessment Scale; delusions of predicting the future or having one's thoughts/actions controlled; and the percent married in one's neighborhood. Random forest followed by ridge regression was most accurate, with a cross-validated area under the curve (AUC) of 0.67. Adjustment of the model including only six variables reached an AUC of 0.70.Conclusions
Results support the potential application of risk calculators for screening and identification of at-risk community youth in prospective investigations of developmental trajectories of the PS.
SUBMITTER: Moore TM
PROVIDER: S-EPMC8273212 | biostudies-literature |
REPOSITORIES: biostudies-literature