Ontology highlight
ABSTRACT: Background
The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real-life conditions.Objective
To assess the diagnostic performance and potential clinical utility of a 174-multiclass AI algorithm in a real-life telemedicine setting.Methods
Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow-up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed.Results
A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real-time diagnosis in 0.6% (n = 2) of cases. The overall top-1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top-1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality.Conclusions
A 174-disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient-taken photographs via telemedicine.
SUBMITTER: Munoz-Lopez C
PROVIDER: S-EPMC8274350 | biostudies-literature |
REPOSITORIES: biostudies-literature