Project description:BackgroundTraditional approaches for surgical site infection (SSI) surveillance have deficiencies that delay detection of SSI outbreaks and other clinically important increases in SSI rates. We investigated whether use of optimised statistical process control (SPC) methods and feedback for SSI surveillance would decrease rates of SSI in a network of US community hospitals.MethodsWe conducted a stepped wedge cluster randomised trial of patients who underwent any of 13 types of common surgical procedures across 29 community hospitals in the Southeastern United States. We divided the 13 procedures into six clusters; a cluster of procedures at a single hospital was the unit of randomisation and analysis. In total, 105 clusters were randomised to 12 groups of 8-10 clusters. All participating clusters began the trial in a 12-month baseline period of control or "traditional" SSI surveillance, including prospective analysis of SSI rates and consultative support for SSI outbreaks and investigations. Thereafter, a group of clusters transitioned from control to intervention surveillance every three months until all clusters received the intervention. Electronic randomisation by the study statistician determined the sequence by which clusters crossed over from control to intervention surveillance. The intervention was the addition of weekly application of optimised SPC methods and feedback to existing traditional SSI surveillance methods. Epidemiologists were blinded to hospital identity and randomisation status while adjudicating SPC signals of increased SSI rates, but blinding was not possible during SSI investigations. The primary outcome was the overall SSI prevalence rate (PR=SSIs/100 procedures), evaluated via generalised estimating equations with a Poisson regression model. Secondary outcomes compared traditional and optimised SPC signals that identified SSI rate increases, including the number of formal SSI investigations generated and deficiencies identified in best practices for SSI prevention. This trial was registered at ClinicalTrials.gov, NCT03075813.FindingsBetween Mar 1, 2016, and Feb 29, 2020, 204,233 unique patients underwent 237,704 surgical procedures. 148,365 procedures received traditional SSI surveillance and feedback alone, and 89,339 procedures additionally received the intervention of optimised SPC surveillance. The primary outcome of SSI was assessed for all procedures performed within participating clusters. SSIs occurred after 1171 procedures assigned control surveillance (prevalence rate [PR] 0.79 per 100 procedures), compared to 781 procedures that received the intervention (PR 0·87 per 100 procedures; model-based PR ratio 1.10, 95% CI 0.94-1.30, p=0.25). Traditional surveillance generated 24 formal SSI investigations that identified 120 SSIs with deficiencies in two or more perioperative best practices for SSI prevention. In comparison, optimised SPC surveillance generated 74 formal investigations that identified 458 SSIs with multiple best practice deficiencies.InterpretationThe addition of optimised SPC methods and feedback to traditional methods for SSI surveillance led to greater detection of important SSI rate increases and best practice deficiencies but did not decrease SSI rates. Additional research is needed to determine how to best utilise SPC methods and feedback to improve adherence to SSI quality measures and prevent SSIs.FundingAgency for Healthcare Research and Quality.
Project description:BackgroundSurgical site infections (SSIs) cause significant patient suffering. Surveillance and feedback of SSI rates is an evidence-based strategy to reduce SSIs, but traditional surveillance methods are slow and prone to bias. The objective of this cluster randomized controlled trial (RCT) is to determine if using optimized statistical process control (SPC) charts for SSI surveillance and feedback lead to a reduction in SSI rates compared to traditional surveillance.MethodsThe Early 2RIS Trial is a prospective, multicenter cluster RCT using a stepped wedge design. The trial will be performed in 29 hospitals in the Duke Infection Control Outreach Network (DICON) and 105 clusters over 4 years, from March 2016 through February 2020; year one represents a baseline period; thereafter, 8-9 clusters will be randomized to intervention every 3 months over a 3-year period using a stepped wedge randomization design. All patients who undergo one of 13 targeted procedures at study hospitals will be included in the analysis; these procedures will be included in one of six clusters: cardiac, orthopedic, gastrointestinal, OB-GYN, vascular, and spinal. All clusters will undergo traditional surveillance for SSIs; once randomized to intervention, clusters will also undergo surveillance and feedback using optimized SPC charts. Feedback on surveillance data will be provided to all clusters, regardless of allocation or type of surveillance. The primary endpoint is the difference in rates of SSI between the SPC intervention compared to traditional surveillance and feedback alone.DiscussionThe traditional approach for SSI surveillance and feedback has several major deficiencies because SSIs are rare events. First, traditional statistical methods require aggregation of measurements over time, which delays analysis until enough data accumulate. Second, traditional statistical tests and resulting p values are difficult to interpret. Third, analyses based on average SSI rates during predefined time periods have limited ability to rapidly identify important, real-time trends. Thus, standard analytic methods that compare average SSI rates between arbitrarily designated time intervals may not identify an important SSI rate increase on time unless the "signal" is very strong. Therefore, novel strategies for early identification and investigation of SSI rate increases are needed to decrease SSI rates. While SPC charts are used throughout industry and healthcare to improve and optimize processes, including other types of healthcare-associated infections, they have not been evaluated as a tool for SSI surveillance and feedback in a randomized trial.Trial registrationClinicalTrials.gov NCT03075813 , Registered March 9, 2017.
Project description:BackgroundNontuberculous mycobacteria (NTM) are emerging pathogens increasingly implicated in healthcare facility-associated (HCFA) infections and outbreaks. We analyzed the performance of statistical process control (SPC) methods in detecting HCFA NTM outbreaks.MethodsWe retrospectively analyzed 3 NTM outbreaks that occurred from 2013 to 2016 at a tertiary care hospital. The outbreaks consisted of pulmonary Mycobacterium abscessus complex (MABC) acquisition, cardiac surgery-associated extrapulmonary MABC infection, and a bronchoscopy-associated pseudo-outbreak of Mycobacterium avium complex (MAC). We analyzed monthly case rates of unique patients who had positive respiratory cultures for MABC, non-respiratory cultures for MABC, and bronchoalveolar lavage cultures for MAC, respectively. For each outbreak, we used these rates to construct a pilot moving average (MA) SPC chart with a rolling baseline window. We also explored the performance of numerous alternative control charts, including exponentially weighted MA, Shewhart, and cumulative sum charts.ResultsThe pilot MA chart detected each outbreak within 2 months of outbreak onset, preceding actual outbreak detection by an average of 6 months. Over a combined 117 months of pre-outbreak and post-outbreak surveillance, no false-positive SPC signals occurred (specificity, 100%). Prospective use of this chart for NTM surveillance could have prevented an estimated 108 cases of NTM. Six high-performing alternative charts detected all outbreaks during the month of onset, with specificities ranging from 85.7% to 94.9%.ConclusionsSPC methods have potential to substantially improve HCFA NTM surveillance, promoting early outbreak detection and prevention of NTM infections. Additional study is needed to determine the best application of SPC for prospective HCFA NTM surveillance in other settings.
Project description:The implementation of statistical techniques in on-line surveillance of financial markets has been frequently studied more recently. As a novel approach, statistical control charts which are famous tools for monitoring industrial processes, have been applied in various financial applications in the last three decades. The aim of this study is to propose a novel application of control charts called profile monitoring in the surveillance of the cryptocurrency markets. In this way, a new control chart is proposed to monitor the price variation of a pair of two most famous cryptocurrencies i.e., Bitcoin (BTC) and Ethereum (ETH). Parameter estimation, tuning and sensitivity analysis are conducted assuming that the random explanatory variable follows a symmetric normal distribution. The triggered signals from the proposed method are interpreted to convert the BTC and ETH at proper times to increase their total value. Hence, the proposed method could be considered a financial indicator so that its signal can lead to a tangible increase of the pair of assets. The performance of the proposed method is investigated through different parameter adjustments and compared with some common technical indicators under a real data set. The results show the acceptable and superior performance of the proposed method.
Project description:BackgroundThe WHO Surgical Safety Checklist reduces morbidity and mortality after surgery, but uptake remains challenging. In particular, low-income countries have been found to have lower rates of checklist use compared with high-income countries. The aim of this study was to determine the impact of educational workshops on Surgical Safety Checklist use implemented as part of a quality improvement initiative in five hospitals in Ethiopia that had variable experience with the Surgical Safety Checklist.MethodsFrom April 2019 to September 2020, each hospital implemented a 6-month surgical quality improvement programme, which included a Surgical Safety Checklist workshop. Statistical process control methodology was used to understand the variation in Surgical Safety Checklist compliance before and after workshops and a time-series analysis was performed using population-averaged generalized estimating equation Poisson regression. Checklist compliance was defined as correctly completing a sign in, timeout, and sign out. Incidence rate ratios of correct checklist use pre- and post-intervention were calculated and the change in mean weekly compliance was predicted.ResultsChecklist compliance data were obtained from 2767 operations (1940 (70 per cent) pre-intervention and 827 (30 per cent) post-intervention). Mean weekly checklist compliance improved from 27.3 to 41.2 per cent (mean difference 13.9 per cent, P = 0.001; incidence rate ratio 1.51, P = 0.001). Hospitals with higher checklist compliance at baseline had the greatest overall improvements in compliance, more than 50 per cent over pre-intervention, while low-performing hospitals showed no improvement.ConclusionSurgical Safety Checklist workshops improved checklist compliance in hospitals with some experience with its use. Workshops had little effect in hospitals unfamiliar with the Surgical Safety Checklist, emphasizing the importance of multifactorial interventions and culture-change approaches. In receptive facilities, short workshops can accelerate behaviour change.
Project description:The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme-metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.
Project description:Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data.
Project description:We present a novel real-time univariate monitoring scheme for detecting a sustained departure of a process mean from some given standard assuming a constant variance. Our proposed stopping rule is based on the total variation of a nonparametric taut string estimator of the process mean and is designed to provide a desired average run length for an in-control situation. Compared to the more prominent CUSUM fast initial response (FIR) methodology and allowing for a restart following a false alarm, the proposed two-sided taut string (TS) scheme produces a significant reduction in average run length for a wide range of changes in the mean that occur at or immediately after process monitoring begins. A decision rule for when to choose our proposed TS chart compared to the CUSUM FIR chart that takes into account both false alarm rate and average run length to detect a shift in the mean is proposed and implemented. Supplementary materials are available online.
Project description:BackgroundGlucose control (GC) with insulin decreases morbidity and mortality of critically ill patients. In this study we investigated GC performance over time during implementation of GC strategies within three intensive care units (ICUs) and in routine clinical practice.MethodsAll adult critically ill patients who stayed for >24 h between 1999 and 2007 were included. Effects of implementing local GC guidelines and guideline revisions on effectiveness/efficiency-related indicators, safety-related indicators, and protocol-related indicators were measured.ResultsData of 17,111 patient admissions were evaluated, with 714,141 available blood glucose levels (BGL) measurements. Mean BGL, time to reach target, hyperglycemia index, sampling frequency, percentage of hyperglycemia events, and in-range measurements statistically changed after introducing GC in all ICUs. The introduction of simple rules on GC had the largest effect. Subsequent changes in the protocol had a smaller effect than the introduction of the protocol itself. As soon as the protocol was introduced, in all ICUs the percentage of hypoglycemia events increased. Various revisions were implemented to reduce hypoglycemia events, but levels never returned to those from pre-implementation. More intensive implementation strategies including the use of a decision support system resulted in better control of the process.ConclusionThere are various strategies to achieve GC in routine clinical practice but with variable success. All of them were associated with an increase in hypoglycemia events, but GC was never stopped. Instead, these events have been accepted and managed. Statistical process control is a useful tool for monitoring phenomena over time and captures within-institution changes.
Project description:BACKGROUND:Systematic, automated methods for monitoring physician performance are necessary if outlying behavior is to be detected promptly and acted on. In the Michigan Urological Surgery Improvement Collaborative (MUSIC), we evaluated several statistical process control (SPC) methods to determine the sensitivity and ease of interpretation for assessing adherence to imaging guidelines for patients with newly diagnosed prostate cancer. METHODS:Following dissemination of imaging guidelines within the Michigan Urological Surgery Improvement Collaborative (MUSIC) for men with newly diagnosed prostate cancer, MUSIC set a target of imaging <?10% of patients for which bone scan is not indicated. We compared four SPC methods using Monte Carlo simulation: p-chart, weighted binomial CUSUM, Bernoulli cumulative sum (CUSUM), and exponentially weighted moving average (EWMA). We simulated non-indicated bone scan rates ranging from 5.9% (within target) to 11.4% (above target) for a representative MUSIC practice. Sensitivity was determined using the average run length (ARL), the time taken to signal a change. We then plotted actual non-indicated bone scan rates for a representative MUSIC practice using each SPC method to qualitatively assess graphical interpretation. RESULTS:EWMA had the lowest ARL and was able to detect changes significantly earlier than the other SPC methodologies (p?<?0.001). The p-chart had the highest ARL and thus detected changes slowest (p?<?0.001). EWMA and p-charts were easier to interpret graphically than CUSUM methods due to their ability to display historical imaging rates. CONCLUSIONS:SPC methods can be used to provide informative and timely feedback regarding adherence to healthcare performance target rates in quality improvement collaboratives. We found the EWMA method most suited for detecting changes in imaging utilization.