Project description:BACKGROUND:The circadian rhythms regulate physiological functions and metabolism. Circadian Time (CT) is a unit to quantify the rhythm of endogenous circadian clock, independent of light influence. To understand the gene expression changes throughout CT, C57BL/6 J mice were maintained under constant darkness (DD) for 6 weeks, and the liver samples were collected starting at 9:00 AM (CT1), and every 4 h in a 24-h cycle (CT5, CT9, CT13, CT17 and CT21). Total RNA was extracted and subjected to RNA-Seq data (deposited as GSE 133342, L-DD). To compare gene oscillation pattern under normal light-dark condition (LD, GSE114400) and short time (2 days) dark-dark condition (S-DD, GSE70497), these data were retried from GEO database, and the trimmed mean of M-values normalization was used to normalize the three RNA-seq data followed by MetaCycle analysis. RESULTS:Approximate 12.1% of the genes under L-DD exhibited significant rhythmically expression. The top 5 biological processes enriched in L-DD oscillation genes were mRNA processing, aromatic compound catabolic process, mitochondrion organization, heterocycle catabolic process and cellular nitrogen compound mitotic catabolic process. The endogenous circadian rhythms of clock genes, P450 genes and lipid metabolism genes under L-DD were further compared with LD and S-DD. The oscillation patterns were similar but the period and amplitude of those oscillation genes were slightly altered. RT-qPCR confirmed the selected RNA sequence findings. CONCLUSIONS:This is the first study to profile oscillation gene expressions under L-DD. Our data indicate that clock genes, P450 genes and lipid metabolism genes expressed rhythmically under L-DD. Light was not the necessary factor for persisting circadian rhythm but influenced the period and amplitude of oscillation genes.
Project description:BackgroundSkipping breakfast is associated with dysmenorrhea in young women. This suggests that the delay of food intake in the active phase impairs uterine functions by interfering with circadian rhythms.ObjectivesTo examine the relation between the delay of feeding and uterine circadian rhythms, we investigated the effects of the first meal occasion in the active phase on the uterine clock.MethodsZeitgeber time (ZT) was defined as ZT0 (08:45) with lights on and ZT12 (20:45) with lights off. Young female mice (8 wk of age) were divided into 3 groups: group I (ad libitum consumption), group II (time-restricted feeding during ZT12-16, initial 4 h of the active period), and group III (time-restricted feeding during ZT20-24, last 4 h of the active period, a breakfast-skipping model). After 2 wk of dietary restriction, mice in each group were killed at 4-h intervals and the expression profiles of uterine clock genes, Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1), Per1 (period circadian clock 1), Per2, and Cry1 (cryptochrome 1), were examined.ResultsqPCR and western blot analyses demonstrated synchronized circadian clock gene expression within the uterus. Immunohistochemical analysis confirmed that BMAL1 protein expression was synchronized among the endometrium and myometrium. In groups I and II, mRNA expression of Bmal1 was elevated after ZT12 at the start of the active phase. In contrast, Bmal1 expression was elevated just after ZT20 in group III, showing that the uterine clock rhythm had shifted 8 h backward. The changes in BMAL1 protein expression were confirmed by western blot analysis.ConclusionsThis study is the first to indicate that time-restricted feeding regulates a circadian rhythm of the uterine clock that is synchronized throughout the uterine body. These findings suggest that the uterine clock system is a new candidate to explain the etiology of breakfast skipping-induced uterine dysfunction.
Project description:The quantity and quality of food intake have been considered crucial for peoples' wellness. Only recently has it become appreciated that the timing of food intake is also critical. Nondipping blood pressure (BP) is prevalent in diabetic patients and is associated with increased cardiovascular events. However, the causes and mechanisms of nondipping BP in diabetes are not fully understood. Here, we report that food intake and BP were arrhythmic in diabetic db/db mice fed a normal chow diet ad libitum. Imposing a food intake diurnal rhythm by time-restricted feeding (TRF; food was only available for 8 h during the active phase) prevented db/db mice from developing nondipping BP and effectively restored the already disrupted BP circadian rhythm in db/db mice. Interestingly, increasing the time of food availability from 8 h to 12 h during the active dark phase in db/db mice prompted isocaloric feeding and still provided robust protection of the BP circadian rhythm in db/db mice. In contrast, neither 8-h nor 12-h TRF affected BP dipping in wild-type mice. Mechanistically, we demonstrate that TRF protects the BP circadian rhythm in db/db mice via suppressing the sympathetic activity during the light phase when they are inactive and fasting. Collectively, these data reveal a potentially pivotal role of the timing of food intake in the prevention and treatment of nondipping BP in diabetes.
Project description:Pathological obesity can result from genetic predisposition, obesogenic diet, and circadian rhythm disruption. Obesity compromises function of muscle, which accounts for a majority of body mass. Behavioral intervention that can counteract obesity arising from genetic, diet or circadian disruption and can improve muscle function holds untapped potential to combat the obesity epidemic. Here we show that Drosophila melanogaster (fruit fly) subject to obesogenic challenges exhibits metabolic disease phenotypes in skeletal muscle; sarcomere disorganization, mitochondrial deformation, upregulation of Phospho-AKT level, aberrant intramuscular lipid infiltration, and insulin resistance. Imposing time-restricted feeding (TRF) paradigm in which flies were fed for 12 h during the day counteracts obesity-induced dysmetabolism and improves muscle performance by suppressing intramuscular fat deposits, Phospho-AKT level, mitochondrial aberrations, and markers of insulin resistance. Importantly, TRF was effective even in an irregular lighting schedule mimicking shiftwork. Hence, TRF is an effective dietary intervention for combating metabolic dysfunction arising from multiple causes.
Project description:We investigated the effects of environmental lighting conditions regulating endogenous melatonin production on neural repair, following experimental spinal cord injury (SCI). Rats were divided into three groups randomly: the SCI + L/D (12/12-h light/dark), SCI + LL (24-h constant light), and SCI + DD (24-h constant dark) groups. Controlled light/dark cycle was pre-applied 2 weeks before induction of spinal cord injury. There was a significant increase in motor recovery as well as body weight from postoperative day (POD) 7 under constant darkness. However, spontaneous elevation of endogenous melatonin in cerebrospinal fluid was seen at POD 3 in all of the SCI rats, which was enhanced in SCI + DD group. Augmented melatonin concentration under constant dark condition resulted in facilitation of neuronal differentiation as well as inhibition of primary cell death. In the rostrocaudal region, elevated endogenous melatonin concentration promoted neural remodeling in acute phase including oligodendrogenesis, excitatory synaptic formation, and axonal outgrowth. The changes were mediated via NAS-TrkB-AKT/ERK signal transduction co-regulated by the circadian clock mechanism, leading to rapid motor recovery. In contrast, exposure to constant light exacerbated the inflammatory responses and neuroglial loss. These results suggest that light/dark control in the acute phase might be a considerable environmental factor for a favorable prognosis after SCI.
Project description:In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.
Project description:Cooling patients to sub-physiological temperatures is an integral part of modern medicine. We show that cold exposure induces temperature-specific changes to the higher-order chromatin and gene expression profiles of human cells. These changes are particularly dramatic at 18°C, a temperature synonymous with that experienced by patients undergoing controlled deep hypothermia during surgery. Cells exposed to 18°C exhibit largely nuclear-restricted transcriptome changes. These include the nuclear accumulation of mRNAs encoding components of the negative limbs of the core circadian clock, most notably REV-ERBα. This response is accompanied by compaction of higher-order chromatin and hindrance of mRNPs from engaging nuclear pores. Rewarming reverses chromatin compaction and releases the transcripts into the cytoplasm, triggering a pulse of negative limb gene proteins that reset the circadian clock. We show that cold-induced upregulation of REV-ERBα is sufficient to trigger this reset. Our findings uncover principles of the cellular cold response that must be considered for current and future applications involving therapeutic deep hypothermia.
Project description:Cooling patients to sub-physiological temperatures is an integral part of modern medicine. We show that cold exposure induces temperature-specific changes to the higher-order chromatin and gene expression profiles of human cells. These changes are particularly dramatic at 18{degree sign}C, a temperature synonymous with that experienced by patients undergoing controlled deep-hypothermia during surgery. Cells exposed to 18{degree sign}C exhibit largely nuclear-restricted transcriptome changes. These include the nuclear accumulation of mRNAs encoding components of the negative limbs of the core circadian clock, most notably REV-ERB?. This response is accompanied by compaction of higher-order chromatin and hindrance of mRNPs from engaging nuclear pores. Rewarming reverses chromatin compaction and releases the transcripts into the cytoplasm, triggering a pulse of negative limb gene proteins that reset the circadian clock. We show that cold-induced upregulation of REV-ERB? is sufficient to trigger this reset. Our findings uncover principles of the cellular cold-response that must be considered for current and future applications involving therapeutic deep-hypothermia.
Project description:The goal of this review was to seek a better understanding of the function and differential expression of circadian clock genes during the reproductive process. Through a discussion of how the circadian clock is involved in these steps, the identification of new clinical targets for sleep disorder-related diseases, such as reproductive failure, will be elucidated. Here, we focus on recent research findings regarding circadian clock regulation within the reproductive system, shedding new light on circadian rhythm-related problems in women. Discussions on the roles that circadian clock plays in these reproductive processes will help identify new clinical targets for such sleep disorder-related diseases.
Project description:In rodents, eating at atypical circadian times, such as during the biological rest phase when feeding is normally minimal, reduces fertility. Prior findings suggest this fertility impairment is due, at least in part, to reduced mating success. However, the physiological and behavioral mechanisms underlying this reproductive suppression are not known. In the present study, we tested the hypothesis that mistimed feeding-induced infertility is due to a disruption in the normal circadian timing of mating behavior and/or the generation of pre-ovulatory luteinizing hormone (LH) surges (estrogen positive feedback). In the first experiment, male+female mouse pairs, acclimated to be food restricted to either the light (mistimed feeding) or dark (control feeding) phase, were scored for mounting frequency and ejaculations over 96 h. Male mounting behavior and ejaculations were distributed much more widely across the day in light-fed mice than in dark-fed controls and fewer light-fed males ejaculated. In the second experiment, the timing of the LH surge, a well characterized circadian event driven by estradiol (E2) and the SCN, was analyzed from serial blood samples taken from ovariectomized and E2-primed female mice that were light-, dark-, or ad-lib-fed. LH concentrations peaked 2 h after lights-off in both dark-fed and ad-lib control females, as expected, but not in light-fed females. Instead, the normally clustered LH surges were distributed widely with high inter-mouse variability in the light-fed group. These data indicate that mistimed feeding disrupts the temporal control of the neural processes underlying both ovulation and mating behavior, contributing to infertility.