Ontology highlight
ABSTRACT: Objective
To report the mutational profile and clinical outcomes of a cohort of patients with KIT-mutant seminomas and nonseminomatous germ-cell tumors (SGCT/NSGCTs).Patients and methods
Retrospective cohort study of all patients with KIT-mutant GCTs sequenced at Memorial Sloan Kettering between March 2014 and March 2020. Tumors were assessed with MSK-IMPACT, a DNA next-generation sequencing assay for targeted sequencing of up to 468 key cancer genes.Results
Among 568 patients with GCTs, 8.1% had somatic KIT mutations, including 28 seminomas and 18 mixed/NSGCTs. Exons 17 (67.3%), 11 (22.4%), and 13 (6.1%) were most commonly affected. KIT-mutant cases were enriched for oncogenic RAS/MAPK pathway alterations compared to KIT-wildtype cases (34.8% vs 19.2%, P = .02). Among KIT-mutant cases, concurrent mutations were noted in KRAS (21.7%), RRAS2 (11.8%), CBL (6.5%), NRAS (4.3%), MAP2K1 (2.2%), and RAC1 (2.2%). Mutations in KRAS, RRAS2, and NRAS were mutually exclusive. In all, 73.9% of patients developed metastases and 95.7% received chemotherapy. No patients received KIT-directed tyrosine kinase inhibitors (TKIs). Classification as a NSGCT rather than a SGCT was associated with an increased risk of death (hazard ratio 9.1, 95% confidence interval 1.1-78.4, P = .04) while the presence of a concurrent RAS/MAPK pathway alteration was not (hazard ratio 0.8, 95% confidence interval 0.1-4.3, P = .76).Conclusion
Mitogenic driver alterations can co-occur with activating KIT mutations, which may explain the lack of efficacy of KIT-directed TKIs in prior trials. Novel KIT-directed TKIs that target exon 17 mutations may benefit chemotherapy-refractory patients with KIT-mutant GCTs without RAS/MAPK alterations. Dual MEK/KIT inhibitor therapy in KIT-mutant GCTs with concurrent RAS/MAPK alterations could also be a plausible therapeutic strategy.
SUBMITTER: Mata DA
PROVIDER: S-EPMC8276690 | biostudies-literature |
REPOSITORIES: biostudies-literature