Unknown

Dataset Information

0

Identifying miRNA-mRNA Integration Set Associated With Survival Time.


ABSTRACT: In the "personalized medicine" era, one of the most difficult problems is identification of combined markers from different omics platforms. Many methods have been developed to identify candidate markers for each type of omics data, but few methods facilitate the identification of multiple markers on multi-omics platforms. microRNAs (miRNAs) is well known to affect only indirectly phenotypes by regulating mRNA expression and/or protein translation. To take into account this knowledge into practice, we suggest a miRNA-mRNA integration model for survival time analysis, called mimi-surv, which accounts for the biological relationship, to identify such integrated markers more efficiently. Through simulation studies, we found that the statistical power of mimi-surv be better than other models. Application to real datasets from Seoul National University Hospital and The Cancer Genome Atlas demonstrated that mimi-surv successfully identified miRNA-mRNA integrations sets associated with progression-free survival of pancreatic ductal adenocarcinoma (PDAC) patients. Only mimi-surv found miR-96, a previously unidentified PDAC-related miRNA in these two real datasets. Furthermore, mimi-surv was shown to identify more PDAC related miRNAs than other methods because it used the known structure for miRNA-mRNA regularization. An implementation of mimi-surv is available at http://statgen.snu.ac.kr/software/mimi-surv.

SUBMITTER: Kim Y 

PROVIDER: S-EPMC8276759 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identifying miRNA-mRNA Integration Set Associated With Survival Time.

Kim Yongkang Y   Lee Sungyoung S   Jang Jin-Young JY   Lee Seungyeoun S   Park Taesung T  

Frontiers in genetics 20210629


In the "personalized medicine" era, one of the most difficult problems is identification of combined markers from different omics platforms. Many methods have been developed to identify candidate markers for each type of omics data, but few methods facilitate the identification of multiple markers on multi-omics platforms. microRNAs (miRNAs) is well known to affect only indirectly phenotypes by regulating mRNA expression and/or protein translation. To take into account this knowledge into practi  ...[more]

Similar Datasets

| S-EPMC5548864 | biostudies-literature
| S-EPMC8581181 | biostudies-literature
| S-EPMC6710979 | biostudies-literature
| S-EPMC5768164 | biostudies-literature
| S-EPMC8249161 | biostudies-literature
| S-EPMC4534763 | biostudies-other
| S-EPMC11765502 | biostudies-literature
| S-EPMC2995118 | biostudies-literature
| S-EPMC6770970 | biostudies-literature
| S-EPMC8533463 | biostudies-literature