Unknown

Dataset Information

0

Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms.


ABSTRACT: Horizontal gene transfer (HGT) is a driving force for the dissemination of antimicrobial resistance (AMR) genes among Campylobacter jejuni organisms, a leading cause of foodborne gastroenteritis worldwide. Although HGT is well documented for C. jejuni planktonic cells, the role of C. jejuni biofilms in AMR spread that likely occurs in the environment is poorly understood. Here, we developed a cocultivation model to investigate the HGT of chromosomally encoded AMR genes between two C. jejuni F38011 AMR mutants in biofilms. Compared to planktonic cells, C. jejuni biofilms significantly promoted HGT (P < 0.05), resulting in an increase of HGT frequencies by up to 17.5-fold. Dynamic study revealed that HGT in biofilms increased at the early stage (i.e., from 24 h to 48 h) and remained stable during 48 to 72 h. Biofilms continuously released the HGT mutants into supernatant culture, indicating spontaneous dissemination of AMR to broader niches. DNase I treatment confirmed the role of natural transformation in genetic exchange. HGT was not associated with biofilm biomass, cell density, or bacterial metabolic activity, whereas the presence of extracellular DNA was negatively correlated with the altered HGT frequencies. HGT in biofilms also had a strain-to-strain variation. A synergistic HGT effect was observed between C. jejuni with different genomic backgrounds (i.e., C. jejuni NCTC 11168 chloramphenicol-resistant strain and F38011 kanamycin-resistant strain). C. jejuni performed HGT at the frequency of 10-7 in Escherichia coli-C. jejuni biofilms, while HGT was not detectable in Salmonella enterica-C. jejuni biofilms. IMPORTANCE Antimicrobial-resistant C. jejuni has been listed as a high priority of public health concern worldwide. To tackle the rapid evolution of AMR in C. jejuni, it is of great importance to understand the extent and characteristics of HGT in C. jejuni biofilms, which serve as the main survival strategy of this microbe in the farm-to-table continuum. In this study, we demonstrated that biofilms significantly enhanced HGT compared to the planktonic state (P < 0.05). Biofilm cultivation time and extracellular DNA (eDNA) amount were related to varied HGT frequencies. C. jejuni could spread AMR genes in both monospecies and dual-species biofilms, mimicking the survival mode of C. jejuni in food chains. These findings indicated that the risk and extent of AMR transmission among C. jejuni organisms have been underestimated, as previous HGT studies mainly focused on the planktonic state. Future AMR controlling measures can target biofilms and their main component eDNA.

SUBMITTER: Ma L 

PROVIDER: S-EPMC8276811 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3394439 | biostudies-literature
| S-EPMC10696089 | biostudies-literature
| S-EPMC5513903 | biostudies-other
| S-EPMC8070549 | biostudies-literature
| S-EPMC7877606 | biostudies-literature
| S-EPMC6968864 | biostudies-literature
| S-EPMC8787162 | biostudies-literature
| S-EPMC6797559 | biostudies-literature
| S-EPMC8076188 | biostudies-literature
| S-EPMC4407228 | biostudies-literature