Project description:SNAI2/SLUG, a metastasis-promoting transcription factor, is a labile protein that is degraded through the ubiquitin proteasome degradation system. Here, we conducted comprehensive gain- and loss-of-function screens using a human DUB cDNA library of 65 genes and an siRNA library of 98 genes, and identified USP20 as a deubiquitinase (DUB) that regulates SNAI2 ubiquitination and stability. Further investigation of USP20 demonstrated its function in promoting migration, invasion, and metastasis of breast cancer. USP20 positively correlates with SNAI2 protein level in breast tumor samples, and higher USP20 expression is associated with poor prognosis in ER- breast cancer patients.
Project description:BackgroundCyclin D1 (CCND1) is overexpressed in non-small cell lung cancer (NSCLC) and contributes to its tumorigenesis and progression. Accumulating evidence shows that ubiquitin-specific protease 5 (USP5), an important member of the USP family, acts as a tumor promoter by deubiquitinating and stabilizing oncoproteins. However, neither the mechanism for dysregulated turnover of CCND1 protein nor the association of CCND1 with USP5 in NSCLC is well understood.MethodsThe association of USP5 with CCND1 in human NSCLC cells and clinical tissues was determined by immunoprecipitation/immunoblotting, immunohistochemistry (IHC), and The Cancer Genome Atlas database analyses. The effect of USP5 knockdown or overexpression on NSCLC cell proliferation in vitro was assessed by Cell Counting Kit-8, flow cytometry-based cell cycle, and colony formation assays. The effect of the USP5 inhibitor EOAI3402143 (G9) on NSCLC proliferation in vitro was analyzed by CCK-8 assay. The effect of G9 on NSCLC xenograft tumor growth was also examined in vivo, using athymic BALB/c nude mice.ResultsUSP5 physically bound to CCND1 and decreased its polyubiquitination level, thereby stabilizing CCND1 protein. This USP5-CCND1 axis promoted NSCLC cell proliferation and colony formation. Further, knockdown of USP5 led to CCND1 degradation and cell cycle arrest in NSCLC cells. Importantly, this tumor-suppressive effect elicited by USP5 knockdown in NSCLC cells was validated in vitro and in vivo through chemical inhibition of USP5 activity using G9. Consistently, G9 downregulated the protein levels of CCND1 in NSCLC cells and xenograft tumor tissues. Also, the expression level of USP5 was positively associated with the protein level of CCND1 in human clinical NSCLC tissues.ConclusionsThis study has provided the first evidence that CCND1 is a novel substrate of USP5. The USP5-CCND1 axis could be a potential target for the treatment of NSCLC.
Project description:During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced ?H2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168.
Project description:Dysregulation of deubiquitination has been reported to contribute to carcinogenesis. However, the function and mechanism of deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) in the progression of ovarian cancer (OV), the deadliest gynecological cancer, still remains to be characterized. The present study demonstrated that PSMD14 was overexpressed in OV tissues and its higher levels correlated with a higher International Federation of Gynecology and Obstetrics (FIGO) stage in OV patients. A high level of PSMD14 expression was related to poor survival in OV patients. Knockdown and overexpression experiments elucidated that PSMD14 stimulated OV cell proliferation, invasion, and migration in vitro. Repression of PSMD14 suppressed OV tumor growth in vivo. PSMD14 inhibitor O-phenanthroline (OPA) effectively attenuated malignant behaviors of OV cells in vitro and OV tumor growth in vivo. Mechanistically, we uncovered that PSMD14 was involved in post-translational regulation of pyruvate kinase M2 isoform (PKM2). PSMD14 decreased K63-linked ubiquitination on PKM2, downregulated the ratio of PKM2 tetramers to dimers and monomers, and subsequently diminished pyruvate kinase activity and induced nuclear translocation of PKM2, contributing to aerobic glycolysis in OV cells. Collectively, our findings highlight the potential roles of PSMD14 as a biomarker and therapeutic candidate for OV.
Project description:Ubiquitination, a crucial post-translational modification, controls substrate degradation and can be reversed by deubiquitinases (DUBs). An increasing number of studies are showing that DUBs regulate the malignant behavior and chemotherapy resistance of gastric cancer (GC) by stabilizing various proteins. However, the expression level and biological function of the DUB, proteasome 26S subunit, non-ATPase 7 (PSMD7), in GC remains unknown. Herein, we report for the first time that PSMD7 is frequently overexpressed in GC tissues. Elevated levels of PSMD7 were also detected in GC cell lines. Notably, the upregulation of PSMD7 closely correlated with malignant clinical parameters and reduced the survival of GC patients. Functionally, we found that PSMD7 knockdown consistently suppressed the proliferation, migration, and invasion of AGS and SGC-7901 cells. Ectopic expression of PSMD7 facilitated GC cell proliferation and mobility. Based on protein-protein interaction prediction, RAD23 homolog B (RAD23B) protein was identified as a candidate substrate of PSMD7. PSMD7 positively regulated the abundance of RAD23B and xeroderma pigmentosum, complementation group C (XPC) protein in GC cells. The interaction between PSMD7 and RAD23B was confirmed using protein immunoprecipitation. PSMD7 knockdown enhanced the ubiquitination and degradation of RAD23B protein in GC cells. PSMD7 promoted cell viability, apoptosis resistance, and DNA damage repair in GC cells upon cisplatin (DDP) treatment. Moreover, PSMD7 silencing inhibited tumor growth and enhanced the sensitivity of GC cells to DDP treatment in mice. In summary, PSMD7 was highly expressed in GC and contributed to the malignant behavior and DDP resistance of tumor cells by stabilizing RAD23B.
Project description:Krüppel-like factor 4 (KLF4) is a zinc-finger containing DNA-binding transcription factor involved in tumorigenesis and acts as a tumour suppressor or an oncogene depending on the tissue. In hepatocellular carcinoma (HCC), KLF4 has been considered as a tumour suppressor, although the mechanism underlying its action remains largely unknown. In this study, we identified the ubiquitin-specific peptidase USP11 as a KLF4-interacting deubiquitinating enzyme using a proteomic approach. USP11 destabilizes KLF4 through the removal of K63-dependent polyubiquitination, thereby inhibiting KLF4 expression. We also provide mechanistic insights into KLF4 degradation and show that USP11 depletion inhibits growth and chemoresistance of HCC cells by enhancing KLF4 stability. Importantly, lipid content was reduced and genes involved in fatty acid metabolism were down-regulated in an in vitro steatosis conditions upon USP11 knockout. Finally, elevated USP11 and reduced KLF4 levels were detected both in a hepatic steatosis in vitro model and in public clinical data of non-alcoholic fatty liver disease and HCC patients. Collectively, these findings suggest that USP11, as KLF4-binding partner, is an important mediator of hepatic tumorigenesis that functions via degradation of KLF4 and is a potential treatment target for liver diseases.
Project description:Zika virus (ZIKV) infection during pregnancy causes intrauterine growth defects and microcephaly, but knowledge of the mechanism through which ZIKV infects and replicates in the placenta remains elusive. Here, we found that ALPP, an alkaline phosphatase expressed primarily in placental tissue, promoted ZIKV infection in both human placental trophoblasts and astrocytoma cells. ALPP bound to ZIKV structural and nonstructural proteins and thereby prevented their proteasome-mediated degradation and enhanced viral RNA replication and virion biogenesis. In addition, the function of ALPP in ZIKV infection depends on its phosphatase activity. Furthermore, we demonstrated that ALPP was stabilized through interactions with BIP, which is the endoplasmic reticulum (ER)-resident heat shock protein 70 chaperone. The chaperone activity of BIP promoted ZIKV infection and mediated the interaction between ALPP and ZIKV proteins. Collectively, our findings reveal a previously unrecognized mechanism through which ALPP facilitates ZIKV replication by coordinating with the BIP protein.IMPORTANCE ZIKV is a recently emerged mosquito-borne flavivirus that can cause devastating congenital Zika syndrome in pregnant women and Guillain-Barré syndrome in adults, but how ZIKV specifically targets the placenta is not well understood. Here, we identified an alkaline phosphatase (ALPP) that is expressed primarily in placental tissue and promotes ZIKV infection by colocalizing with ZIKV proteins and preventing their proteasome-mediated degradation. The phosphatase activity of ALPP could be required for optimal ZIKV infection, and ALPP is stabilized by BIP via its chaperone activity. This report provides novel insights into host factors required for ZIKV infection, which potentially has implications for ZIKV infection of the placenta.
Project description:Platinum (PT)-resistant Epithelial Ovarian Cancer (EOC) grows as a metastatic disease, disseminating in the abdomen and pelvis. Very few options are available for PT-resistant EOC patients, and little is known about how the acquisition of PT-resistance mediates the increased spreading capabilities of EOC. Here, using isogenic PT-resistant cells, genetic and pharmacological approaches and patient-derived models, we report that Integrin 6 (ITGA6) is overexpressed by PT-resistant cells and is necessary to sustain EOC metastatic ability and adhesion dependent PT-resistance. Using in vitro approaches, we showed that PT induces a positive loop that, by stimulating ITGA6 transcription and secretion, contributes to the formation of a pre-metastatic niche enabling EOC cells to disseminate. At molecular level, ITGA6 engagement regulates the production and availability of insulin-like growth factors (IGFs), over-stimulating the IGF1R pathway and upregulating Snail expression. In vitro data were recapitulated using in vivo models in which the targeting of ITGA6 prevents PT-resistant EOC dissemination and improves PT-activity, supporting ITGA6 as a promising druggable target for EOC patients.
Project description:BACKGROUND:Ovarian cancer is the most lethal gynecologic cancer. Chemoresistance, especially platinum-resistance, is closely related to metastasis of ovarian cancer, however, the molecular basis by which links chemoresistance and metastasis remains vague. Disordered arachidonic acid (AA) metabolism has been shown to play an important role in the advanced ovarian cancer. This study aimed to explore the underlying mechanism involving eicosanoid metabolism that controlling chemoresistance and metastasis of ovarian cancer. METHODS:Cisplatin (DDP)-resistant SKOV3 (SKOV3-R) cells were constantly induced. Ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was performed to determine the AA metabolism in SKOV3 and SKOV3-R cells. Half maximal inhibitory concentration (IC50) and percentage of cell viability were tested using cell counting kit 8 (CCK-8). Realtime quantitative PCR (qPCR) and immunohistochemistry (IHC) were used to evaluate indicated genes and proteins respectively. Bioinformatic analysis and chromatin immunoprecipitation (ChIP) were performed to predict and identify the co-transcription factor of interest genes. Tumor growth and metastasis in the liver were assessed with nude mice by subcutaneously injection of SKOV3-R cells. RESULTS:SKOV3-R cells expressed higher multidrug resistance-associated proteins (MRPs) MRP1 and MRP4. They showed enhanced metastatic ability and produced increased AA-derived eicosanoids. Mechanistically, MRPs, epithelial mesenchymal transition (EMT) markers Snail and Slug, as well as key enzymes involved in AA-metabolism including 12-lipoxygenase (12LOX) were transcribed by the mutual transcription factor SP1 which was consistently upregulated in SKOV3-R cells. Inhibition of SP1 or 12LOX sensitized SKOV3-R cells to DDP and impaired metastasis in vitro and in vivo. CONCLUSION:Our results reveal that SP1-12LOX axis signaling plays a key role in DDP-resistance and metastasis, which provide a new therapeutic target for ovarian cancer.