Project description:Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with B7 proteins CD80 and CD86. CTLA-4 is the first immune checkpoint targeted with a monoclonal antibody inhibitor. Checkpoint inhibitors have generated durable responses in many cancer patients, representing a revolutionary milestone in cancer immunotherapy. However, therapeutic efficacy is limited to a small portion of patients, and immune-related adverse events are noteworthy, especially for monoclonal antibodies directed against CTLA-4. Previously, small molecules have been developed to impair the CTLA-4: CD80 interaction; however, they directly targeted CD80 and not CTLA-4. In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to target CTLA-4. We validated primary hits with biochemical, biophysical, immunological, and experimental animal assays. We then optimized lead compounds and obtained inhibitors with an inhibitory concentration of 1 micromole in disrupting the interaction between CTLA-4 and CD80. Unlike ipilimumab, these small molecules did not degrade CTLA-4. Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. This project supports an AI-based framework in designing small molecules targeting immune checkpoints for cancer therapy.
Project description:BackgroundPost-hospitalization remote patient monitoring (RPM) has potential to improve health outcomes for high-risk patients with chronic medical conditions. The purpose of this study is to determine the extent to which RPM for patients with congestive heart failure (CHF) and chronic obstructive pulmonary disease (COPD) is associated with reductions in post-hospitalization mortality, hospital readmission, and ED visits within an Accountable Care Organization (ACO).MethodsNonrandomized prospective study of patients in an ACO offered enrollment in RPM upon hospital discharge between February 2021 and December 2021. RPM comprised of vital sign monitoring equipment (blood pressure monitor, scale, pulse oximeter), tablet device with symptom tracking software and educational material, and nurse-provided oversight and triage. Expected enrollment was for at least 30-days of monitoring, and outcomes were followed for 6 months following enrollment. The co-primary outcomes were (a) the composite of death, hospital admission, or emergency care visit within 180 days of eligibility, and (b) time to occurrence of this composite. Secondary outcomes were each component individually, the composite of death or hospital admission, and outpatient office visits. Adjusted analyses involved doubly robust estimation to address confounding by indication.ResultsOf 361 patients offered remote monitoring (251 with CHF and 110 with COPD), 140 elected to enroll (106 with CHF and 34 with COPD). The median duration of RPM-enrollment was 54 days (IQR 34-85). Neither the 6-month frequency of the co-primary composite outcome (59% vs 66%, FDR p-value = 0.47) nor the time to this composite (median 29 vs 38 days, FDR p-value = 0.60) differed between the groups, but 6-month mortality was lower in the RPM group (6.4% vs 17%, FDR p-value = 0.02). After adjustment for confounders, RPM enrollment was associated with nonsignificantly decreased odds for the composite outcome (adjusted OR [aOR] 0.68, 99% CI 0.25-1.34, FDR p-value 0.30) and lower 6-month mortality (aOR 0.41, 99% CI 0.00-0.86, FDR p-value 0.20).ConclusionsRPM enrollment may be associated with improved health outcomes, including 6-month mortality, for selected patient populations.
Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation. Keywords: other
Project description:Background and Purpose Chronic obstructive pulmonary disease (COPD), is a primary public health issue globally and in our country, which continues to increase due to poor awareness of the disease and lack of necessary preventive measures. COPD is the result of a blockage of the air sacs known as alveoli within the lungs; it is a persistent sickness that causes difficulty in breathing, cough, and shortness of breath. COPD is characterized by breathing signs and symptoms and airflow challenge because of anomalies in the airways and alveoli that occurs as the result of significant exposure to harmful particles and gases. The spirometry test (breath measurement test), used for diagnosing COPD, is creating difficulties in reaching hospitals, especially in patients with disabilities or advanced disease and in children. To facilitate the diagnostic treatment and prevent these problems, it is far evaluated that using photoplethysmography (PPG) signal in the diagnosis of COPD disease would be beneficial in order to simplify and speed up the diagnosis process and make it more convenient for monitoring. A PPG signal includes numerous components, including volumetric changes in arterial blood that are related to heart activity, fluctuations in venous blood volume that modify the PPG signal, a direct current (DC) component that shows the optical properties of the tissues, and modest energy changes in the body. PPG has typically received the usage of a pulse oximeter, which illuminates the pores and skin and measures adjustments in mild absorption. PPG occurring with every heart rate is an easy signal to measure. PPG signal is modeled by machine learning to predict COPD. Methods During the studies, the PPG signal was cleaned of noise, and a brand-new PPG signal having three low-frequency bands of the PPG was obtained. Each of the four signals extracted 25 features. An aggregate of 100 features have been extracted. Additionally, weight, height, and age were also used as characteristics. In the feature selection process, we employed the Fisher method. The intention of using this method is to improve performance. Results This improved PPG prediction models have an accuracy rate of 0.95 performance value for all individuals. Classification algorithms used in feature selection algorithm has contributed to a performance increase. Conclusion According to the findings, PPG-based COPD prediction models are suitable for usage in practice.
Project description:Measuring genome-wide changes in transcript abundance in circulating peripheral whole blood cells is a useful way to study disease pathobiology and may help elucidate biomarkers and molecular mechanisms of disease. The sensitivity and interpretability of analyses carried out in this complex tissue, however, are significantly affected by its heterogeneity. It is therefore desirable to quantify this heterogeneity, either to account for it or to better model interactions that may be present between the abundance of certain transcripts, some cell types and some indication. Accurate enumeration of the many component cell types that make up peripheral whole blood can be costly, however, and may further complicate the sample collection process. Many approaches have been developed to infer the composition of a sample from high-dimensional transcriptomic and, more recently, epigenetic data. These approaches rely on the availability of isolated expression profiles for the cell types to be enumerated. These profiles are platform-specific, suitable datasets are rare, and generating them is expensive. No such dataset exists on the Affymetrix Gene ST platform. We present a freely-available, and open-source, multiresponse Gaussian model capable of accurately inferring the composition of peripheral whole blood samples from Affymetrix Gene ST expression profiles. The model was developed on a cohort of patients with chronic obstructive pulmonary disease (COPD) and tested in chronic heart failure patients.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients. A five chip study using total RNA recovered from Peripheral Blood Mononuclear Cell of Peripheral Blood.Evaluating the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10 after the hospital admission, to compared with healthy controls or patients with stable COPD. Slides were scanned at 5 μm/pixel resolution using an Axon GenePix 4000B scanner (Molecular Devices Corporation) piloted by GenePix Pro 6.0 software (Axon). Scanned images (TIFF format) were then imported into NimbleScan software (version 2.5) for grid alignment and expression data analysis. Expression data were normalized through quantile normalization and the Robust Multichip Average (RMA) algorithm included in the NimbleScan software. The Probe level (*_norm_RMA.pair) files and Gene level (*_RMA.calls) files were generated after normalization.
Project description:BackgroundChronic obstructive pulmonary disease (COPD) is the third leading cause of mortality worldwide. Reducing the number of COPD exacerbations is an important patient outcome and a major cost-saving approach. Both technology-enabled self-monitoring (SM) and remote monitoring (RM) programs have the potential to reduce exacerbations, but they have not been directly compared with each other. As RM is a more resource-intensive strategy, it is important to understand whether it is more effective than SM.ObjectiveThe objective of this study is to evaluate the impact of SM and RM on self-management behaviors, COPD disease knowledge, and respiratory status relative to standard care (SC).MethodsThis was a 3-arm open-label randomized controlled trial comparing SM, RM, and SC completed in an outpatient COPD clinic in a community hospital. Patients in the SM and RM groups recorded their vital signs (oxygen, blood pressure, temperature, and weight) and symptoms with the Cloud DX platform every day and were provided with a COPD action plan. Patients in the RM group also received access to a respiratory therapist (RT). The RT monitored their vital signs intermittently and contacted them when their vitals varied outside of predetermined thresholds. The RT also contacted patients once a week irrespective of their vital signs or symptoms. All patients were randomized to 1 of the 3 groups and assessed at baseline and 3 and 6 months after program initiation. The primary outcome was the Partners in Health scale, which measures self-management skills. Secondary outcomes included the St. George's Respiratory Questionnaire, Bristol COPD Knowledge Questionnaire, COPD Assessment Test, and modified-Medical Research Council Breathlessness Scale. Patients were also asked to self-report on health system usage.ResultsA total of 122 patients participated in the study, 40 in the SC, 41 in the SM, and 41 in the RM groups. Out of those patients, 7 in the SC, 5 in the SM, and 6 in the RM groups did not complete the study. There were no significant differences in the rates of study completion among the groups (P=.80).ConclusionsBoth SM and RM have shown promise in reducing acute care utilization and exacerbation frequencies. As far as we are aware, no studies to date have directly compared technology-enabled self-management with RM programs in COPD patients. We believe that this study will be an important contribution to the literature.Trial registrationClinicalTrials.gov NCT03741855; https://clinicaltrials.gov/ct2/show/NCT03741855.International registered report identifier (irrid)DERR1-10.2196/13920.
Project description:BACKGROUND:Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and leads to frequent hospital admissions and emergency department (ED) visits. COPD exacerbations are an important patient outcome, and reducing their frequency would result in significant cost savings. Remote monitoring and self-monitoring could both help patients manage their symptoms and reduce the frequency of exacerbations, but they have different resource implications and have not been directly compared. OBJECTIVE:This study aims to compare the effectiveness of implementing a technology-enabled self-monitoring program versus a technology-enabled remote monitoring program in patients with COPD compared with a standard care group. METHODS:We conducted a 3-arm randomized controlled trial evaluating the effectiveness of a remote monitoring and a self-monitoring program relative to standard care. Patients with COPD were recruited from outpatient clinics and a pulmonary rehabilitation program. Patients in both interventions used a Bluetooth-enabled device kit to monitor oxygen saturation, blood pressure, temperature, weight, and symptoms, but only patients in the remote monitoring group were monitored by a respiratory therapist. All patients were assessed at baseline and at 3 and 6 months after program initiation. Outcomes included self-management skills, as measured by the Partners in Health (PIH) Scale; patient symptoms measured with the St George's Respiratory Questionnaire (SGRQ); and the Bristol COPD Knowledge Questionnaire (BCKQ). Patients were also asked to self-report on health system use, and data on health use were collected from the hospital. RESULTS:A total of 122 patients participated in the study: 40 in the standard care, 41 in the self-monitoring, and 41 in the remote monitoring groups. Although all 3 groups improved in PIH scores, BCKQ scores, and SGRQ impact scores, there were no significant differences among any of the groups. No effects were observed on the SGRQ activity or symptom scores or on hospitalizations, ED visits, or clinic visits. CONCLUSIONS:Despite regular use of the technology, patients with COPD assigned to remote monitoring or self-monitoring did not have any improvement in patient outcomes such as self-management skills, knowledge, or symptoms, or in health care use compared with each other or with a standard care group. This may be owing to low health care use at baseline, the lack of structured educational components in the intervention groups, and the lack of integration of the action plan with the technology. TRIAL REGISTRATION:ClinicalTrials.gov NCT03741855; https://clinicaltrials.gov/ct2/show/ NCT03741855.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients.