Sequential CD19/22 CAR T-cell immunotherapy following autologous stem cell transplantation for central nervous system lymphoma.
Ontology highlight
ABSTRACT: Chimeric antigen receptor (CAR) T-cell immunotherapy following autologous stem cell transplantation (ASCT) is a promising method for refractory or relapsed multiple myeloma, but explicit data for central nervous system lymphoma (CNSL) are lacking. Here, we treated 13 CNSL patients with ASCT sequential CD19/22 CAR T-cell infusion and simultaneously evaluated the clinical efficacy and toxicity. The 13 CNSL patients analyzed included four primary CNSL and nine secondary CNSL patients. Patients 1 and 10, who had complete remission status before enrollment, maintained clinical efficacy without recurrence. Nine of the remaining 11 patients responded to our protocol with a median durable time of 14.03 months, and the overall response and complete remission rate were 81.81% and 54.55%, respectively. No patient suffered grades 3-4 cytokine-release syndrome (CRS), and only patient 10 experienced severe immune effector cell-associated neurotoxicity syndrome (ICANS). In addition, increases in serum ferritin and interleukin-6 levels were often accompanied by CRS and ICANS. After a median follow-up time of 14.20 months, the estimated 1-year progression-free survival and overall survival rates were 74.59% and 82.50%, respectively. Sequential CD19/22 CAR T-cell immunotherapy following ASCT as a novel method for CNSL appears to have encouraging long-term efficacy with relatively manageable side effects.
Project description:High-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT) is the standard of care for relapsed or primary refractory (rel/ref) chemorefractory diffuse large B-cell lymphoma. Only 50% of patients are cured with this approach. We investigated safety and efficacy of CD19-specific chimeric antigen receptor (CAR) T cells administered following HDT-ASCT. Eligibility for this study includes poor-risk rel/ref aggressive B-cell non-Hodgkin lymphoma chemosensitive to salvage therapy with: (1) positron emission tomography-positive disease or (2) bone marrow involvement. Patients underwent standard HDT-ASCT followed by 19-28z CAR T cells on days +2 and +3. Of 15 subjects treated on study, dose-limiting toxicity was observed at both dose levels (5 × 106 and 1 × 107 19-28z CAR T per kilogram). Ten of 15 subjects experienced CAR T-cell-induced neurotoxicity and/or cytokine release syndrome (CRS), which were associated with greater CAR T-cell persistence (P = .05) but not peak CAR T-cell expansion. Serum interferon-γ elevation (P < .001) and possibly interleukin-10 (P = .07) were associated with toxicity. The 2-year progression-free survival (PFS) is 30% (95% confidence interval, 20% to 70%). Subjects given decreased naive-like (CD45RA+CCR7+) CD4+ and CD8+ CAR T cells experienced superior PFS (P = .02 and .04, respectively). There was no association between CAR T-cell peak expansion, persistence, or cytokine changes and PFS. 19-28z CAR T cells following HDT-ASCT were associated with a high incidence of reversible neurotoxicity and CRS. Following HDT-ASCT, effector CD4+ and CD8+ immunophenotypes may improve disease control. This trial was registered at www.clinicaltrials.gov as #NCT01840566.
Project description:Patients with follicular lymphoma (FL) with early relapse after initial chemoimmunotherapy, refractory disease, or histologic transformation (tFL) have limited progression-free and overall survival. We report efficacy and long-term follow-up of 21 patients with relapsed/refractory (R/R) FL (n = 8) and tFL (n = 13) treated on a phase 1/2 clinical trial with cyclophosphamide and fludarabine lymphodepletion followed by infusion of 2 × 106 CD19-directed chimeric antigen receptor-modified T (CAR-T) cells per kilogram. The complete remission (CR) rates by the Lugano criteria were 88% and 46% for patients with FL and tFL, respectively. All patients with FL who achieved CR remained in remission at a median follow-up of 24 months. The median duration of response for patients with tFL was 10.2 months at a median follow-up of 38 months. Cytokine release syndrome occurred in 50% and 39%, and neurotoxicity in 50% and 23% of patients with FL and tFL, respectively, with no severe adverse events (grade ≥3). No significant differences in CAR-T cell in vivo expansion/persistence were observed between FL and tFL patients. CD19 CAR-T cell immunotherapy is highly effective in adults with clinically aggressive R/R FL with or without transformation, with durable remission in a high proportion of FL patients. This trial was registered at clinicaltrials.gov as #NCT01865617.
Project description:Secondary central nervous system large B-cell lymphoma (SCNSL) is rare, with a generally poor prognosis. There is limited data about the role of autologous stem cell transplantation (ASCT) in these high-risk patients. We explored in this study treatment outcomes and prognostic factors for patients with SCNSL who underwent ASCT. We included all consecutive patients who underwent ASCT at our institution. Primary endpoints were progression-free survival (PFS) and overall survival (OS). One-hundred two patients were identified. Median age at transplant was 56 (range, 21-71) years. With a median follow-up of 56 (range, 1-256) months, the median PFS and OS were 40 and 88 months, respectively. The 4-year PFS and OS were 48% and 57%, respectively. In univariate analysis, complete remission (CR) at transplant, prior lines of therapy (≤2), normal lactate dehydrogenase, and parenchymal involvement were significantly associated with improved PFS. For OS, only CR at transplant and ≤2 prior lines of therapy were associated with improved survival. On multivariable analysis for PFS, CR at transplant (hazard ratio [HR], 0.278; 95% CI, 0.153-0.506; P ≤ .0001) and ≤2 prior lines of therapy (HR, 0.485; 95% CI, 0.274-0.859; P = .0131) were significantly associated with superior PFS. Similarly, CR at transplant (HR, 0.352; 95% CI, 0.186-0.663; P = .0013) and ≤2 prior lines of therapy (HR, 0.476; 95% CI, 0.257-0.882; P = .0183) were associated with improved survival. In the largest single-center study, our findings indicate that ASCT is associated with durable responses and prolonged survival in patients with SCNSL. Patients in CR at transplant and those who received ≤2 lines of therapy have particularly excellent outcomes.
Project description:Chimeric antigen receptor T cells (CAR-T cell) targeting CD19 are effective against several subtypes of CD19-expressing hematologic malignancies. Centralized manufacturing has allowed rapid expansion of this cellular therapy, but it may be associated with treatment delays due to the required logistics. We hypothesized that point of care manufacturing of CAR-T cells on the automated CliniMACS Prodigy® device allows reproducible and fast delivery of cells for the treatment of patients with non-Hodgkin lymphoma. Here we describe cell manufacturing results and characterize the phenotype and effector function of CAR-T cells used in a phase I/II study. We utilized a lentiviral vector delivering a second-generation CD19 CAR construct with 4-1BB costimulatory domain and TNFRSF19 transmembrane domain. Our data highlight the successful generation of CAR-T cells at numbers sufficient for all patients treated, a shortened duration of production from 12 to 8 days followed by fresh infusion into patients, and the detection of CAR-T cells in patient circulation up to 1-year post-infusion.
Project description:Encouraging response has been achieved in relapsed/refractory (R/R) B-cell lymphoma treated by chimeric antigen receptor T (CAR-T) cells. The efficacy and safety of CAR-T cells in central nervous system lymphoma (CNSL) are still elusive. Here, we retrospectively analyzed 15 patients with R/R secondary CNSL receiving CD19-specific CAR-T cell-based therapy. The patients were infused with CD19, CD19/CD20 or CD19/CD22 CAR-T cells following a conditioning regimen of cyclophosphamide and fludarabine. The overall response rate was 73.3% (11/15), including 9 (60%) with complete remission (CR) and 2 (13.3%) with partial remission (PR). During a median follow-up of 12 months, the median progression-free survival (PFS) was 4 months, and the median overall survival (OS) was 9 months. Of 12 patients with systemic tumor infiltration, 7 (58.3%) achieved CR in CNS, and 5 (41.7%) achieved CR both systemically and in CNS. Median DOR for CNS and systemic disease were 8 and 4 months, respectively. At the end point of observation, of the 7 patients achieved CNS disease CR, one was still alive with sustained CR of CNS disease and systemic disease. The other 6 died of systemic progression. Of the 15 patients, 11 (73.3%) experienced grades 1-2 CRS, and no patient had grades 3-4 CRS. Immune effector cell-associated neurotoxicity syndrome (ICANS) occurred in 3 (20%) patients, including 1 (6.6%) with grade 4 ICANS. All the CRS or ICANS were manageable. The CD19-specific CAR-T cell-based therapy appeared to be a promising therapeutic approach in secondary CNSL, based on its antitumor effects and an acceptable side effect profile, meanwhile more strategies are needed to maintain the response.
Project description:Multiple myeloma is usually fatal due to serial relapses that become progressively refractory to therapy. CD19 is typically absent on the dominant multiple myeloma cell population but may be present on minor subsets with unique myeloma-propagating properties. To target myeloma-propagating cells, we clinically evaluated autologous T cells transduced with a chimeric antigen receptor (CAR) against CD19 (CTL019). Subjects received CTL019 following salvage high-dose melphalan and autologous stem cell transplantation (ASCT). All subjects had relapsed/refractory multiple myeloma and had previously undergone ASCT with less than 1 year progression-free survival (PFS). ASCT + CTL019 was safe and feasible, with most toxicity attributable to ASCT and no severe cytokine release syndrome. Two of 10 subjects exhibited significantly longer PFS after ASCT + CTL019 compared with prior ASCT (479 vs. 181 days; 249 vs. 127 days). Correlates of favorable clinical outcome included peak CTL019 frequency in bone marrow and emergence of humoral and cellular immune responses against the stem-cell antigen Sox2. Ex vivo treatment of primary myeloma samples with a combination of CTL019 and CAR T cells against the plasma cell antigen BCMA reliably inhibited myeloma colony formation in vitro, whereas treatment with either CAR alone inhibited colony formation inconsistently. CTL019 may improve duration of response to standard multiple myeloma therapies by targeting and precipitating secondary immune responses against myeloma-propagating cells. Clinicaltrials.gov identifier NCT02135406. Novartis, NIH, Conquer Cancer Foundation.
Project description:B cell lymphoma therapy has been transformed by CD19-targeting cellular therapeutics that induce high clinical response rates and impressive remissions in relapsed and refractory patients. However, approximately half of all patients who respond to CD19-directed cell therapy relapse, the majority within 6 months. One characteristic of relapse is loss or reduction of CD19 expression on malignant B cells. We designed a unique therapeutic to prevent and reverse relapses due to lost or reduced CD19 expression. This novel biologic, a CAR T Engager, binds CD20 and displays the CD19 extracellular domain. This approach increases the apparent CD19 antigen density on CD19-positive/CD20-positive lymphoma cells, and prevents antigen-loss induced relapse, as CD19 bound to CD20 remains present on the cell surface. We demonstrate that this novel therapeutic prevents and reverses lymphoma relapse in vitro and prevents CD19-negative lymphoma growth and relapse in vivo.
Project description:BackgroundThe use of T cells expressing chimeric antigen receptor (CAR T) engineered to target CD19 constitutes breakthrough treatment for relapsed or refractory B cell non-Hodgkin lymphoma (R/R B-NHL). Despite improved outcomes, high relapse rate remains a challenge to overcome. Here, we report the clinical results and the pharmacokinetics of bispecific CD19/22 CAR T in patients with R/R B-NHL.MethodsWe performed a prospective, single-arm study of bispecific CD19/22 CAR T cells in R/R B-NHL. We analyzed the safety and efficacy and investigated the kinetic profiles of the CAR T cells. CAR transgene levels were measured using quantitative polymerase chain reaction, and correlation analyses of pharmacodynamic markers and product characteristics, disease conditions, clinical efficacy and adverse events were performed.ResultsFrom August 2017 to September 2020, a total of 32 patients with CD19/22 CAR T administration were analyzed. The overall response rate was 79.3%, and the complete response rate was 34.5%. The progression-free survival (PFS) and overall survival (OS) rates at 12 months were 40.0% and 63.3%, respectively. Among patients who had a CR at 3 months, the PFS and OS rates at 12 months were 66.7% and 100%, respectively. Severe cytokine release syndrome (sCRS) (grade 3 and higher) occurred in nine patients (28.1%). Grade 3 or higher neurologic events occurred in four patients (12.5%). One patient died from irreversible severe CRS-associated acute kidney injury. Long-term CAR T cells persistence correlated with clinical efficacy (133 days vs 22 days, P = 0.004). Patients treated with more than three prior therapies and presenting extranodal organ involvement had lower maximal concentration (Cmax) values than other patients. Responders had higher Cmax and area under the curve values than non-responders. Tumour burden and Cmax were potentially associated with the severity of CRS.ConclusionsThis study demonstrates the safety and potential clinical efficacy of bispecific CD19/22 CAR T cells in patients with R/R B-NHL and highlights the importance of measuring kinetic parameters in PB to predict efficacy and safety in clinical applications of CAR T cell therapy.Clinical trial registrationhttps://www.clinicaltrials.gov/ct2/show/NCT03196830, identifier NCT03196830.
Project description:Adoptive transfer of CD19-specific chimeric antigen receptor T-cells (CAR-T cells) has transformed the treatment paradigm of relapsed/refractory (R/R) CD19 B-cell malignancies, dramatically improving remission rates and cures in patients with chemo-refractory disease. However, the applicability of CD19 CAR-T cells is limited to B cell malignancies and antigen loss can result in treatment failure, prompting the exploration of alternative targets to overcome tumor escape via CD19 antigen loss, as well as extend the CAR-T cell platform to treat Hodgkin and T cell lymphomas. This review highlights recent clinical trials testing CAR-T cell targets beyond CD19.
Project description:Autologous hematopoietic cell transplantation (AHCT) is a standard of care for several subtypes of high-risk lymphoma, but durable remissions are not achieved in the majority of patients. Intensified conditioning using CD45-targeted antibody-radionuclide conjugate (ARC) preceding AHCT may improve outcomes in lymphoma by permitting the delivery of curative doses of radiation to disease sites while minimizing toxicity. We performed sequential phase I trials of escalating doses of yttrium-90 (90Y)-labeled anti-CD45 antibody with or without BEAM (carmustine, etoposide, cytarabine, melphalan) chemotherapy followed by AHCT in adults with relapsed/refractory or high-risk B cell non-Hodgkin lymphoma (NHL), T cell NHL (T-NHL), or Hodgkin lymphoma (HL). Twenty-one patients were enrolled (16 NHL, 4 HL, 1 T-NHL). Nineteen patients received BEAM concurrently. No dose-limiting toxicities were observed; therefore, the maximum tolerated dose is estimated to be ≥34 Gy to the liver. Nonhematologic toxicities and engraftment kinetics were similar to standard myeloablative AHCT. Late myeloid malignancies and 100-day nonrelapse deaths were not observed. At a median follow-up of 5 years, the estimates of progression-free and overall survival of 19 patients were 37% and 68%, respectively. Two patients did not receive BEAM; one had stable disease and the other progressive disease post-transplant. The combination of 90Y-anti-CD45 with BEAM and AHCT was feasible and tolerable in patients with relapsed and refractory lymphoma. The use of anti-CD45 ARC as an adjunct to hematopoietic cell transplantation regimens or in combination with novel therapies/immunotherapies should be further explored based on these and other data.