Ontology highlight
ABSTRACT: Background
We developed and validated a prognostic and predictive computational pathology risk score (CoRiS) using H&E stained tissue images from patients with early-stage non-small cell lung cancer (ES-NSCLC).Methods
1330 patients with ES-NSCLC were acquired from 3 independent sources and divided into four cohorts D1-4. D1 comprised 100 surgery treated patients and was used to identify prognostic features via an elastic-net Cox model to predict overall and disease-free survival. CoRiS was constructed using the Cox model coefficients for the top features. The prognostic performance of CoRiS was evaluated on D2 (N=331), D3 (N=657) and D4 (N=242). Patients from D2 and D3 which comprised surgery + chemotherapy were used to validate CoRiS as predictive of added benefit to adjuvant chemotherapy (ACT) by comparing survival between different CoRiS defined risk groups.Findings
CoRiS was found to be prognostic on univariable analysis, D2 (hazard ratio (HR) = 1.41, adjusted (adj.) P = .01) and D3 (HR = 1.35, adj. P < .001). Multivariable analysis showed CoRiS was independently prognostic, D2 (HR = 1.41, adj. P < .001) and D3 (HR = 1.35, adj. P < .001), after adjusting for clinico-pathologic factors. CoRiS was also able to identify high-risk patients who derived survival benefit from ACT D2 (HR = 0.42, adj. P = .006) and D3 (HR = 0.46, adj. P = .08).Interpretation
CoRiS is a tissue non-destructive, quantitative and low-cost tool that could potentially help guide management of ES-NSCLC patients.
SUBMITTER: Wang X
PROVIDER: S-EPMC8282972 | biostudies-literature |
REPOSITORIES: biostudies-literature