Unknown

Dataset Information

0

HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis.


ABSTRACT: Although inflammation is critical for the clearance of pathogens, uncontrolled inflammation also contributes to the development of multiple diseases such as cancer and sepsis. Since NF-κB-mediated transactivation in the nucleus is pivotal downstream of various stimuli to induce inflammation, searching the nuclear-localized targets specifically regulating NF-κB activation will provide important therapeutic application. Here, we have identified that homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, increases its expression in inflammatory macrophages. Importantly, HIPK2 deficiency or overexpression could enhance or inhibit inflammatory responses in LPS-stimulated macrophages, respectively. HIPK2-deficient mice were more susceptible to LPS-induced endotoxemia and CLP-induced sepsis. Adoptive transfer of Hipk2 +/- bone marrow cells (BMs) also aggravated AOM/DSS-induced colorectal cancer. Mechanistically, HIPK2 bound and phosphorylated histone deacetylase 3 (HDAC3) at serine 374 to inhibit its enzymatic activity, thus reducing the deacetylation of p65 at lysine 218 to suppress NF-κB activation. Notably, the HDAC3 inhibitors protected wild-type or Hipk2 -/- BMs-reconstituted mice from LPS-induced endotoxemia. Our findings suggest that the HIPK2-HDAC3-p65 module in macrophages restrains excessive inflammation, which may represent a new layer of therapeutic mechanism for colitis-associated colorectal cancer and sepsis.

SUBMITTER: Zhang F 

PROVIDER: S-EPMC8285910 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6447546 | biostudies-literature
| S-EPMC7719442 | biostudies-literature
| S-EPMC8025585 | biostudies-literature
| S-EPMC6599279 | biostudies-literature
| S-EPMC7556837 | biostudies-literature
| S-EPMC7078531 | biostudies-literature
| S-EPMC6652780 | biostudies-literature
| S-EPMC6678495 | biostudies-literature
| S-EPMC8616537 | biostudies-literature
| S-EPMC7579683 | biostudies-literature