Project description:NLRP3 inflammasome mediated release of interleukin-1β (IL-1β) has been implicated in various diseases, including COVID-19. In this study, rationally designed alkenyl sulfonylurea derivatives were identified as novel, potent and orally bioavailable NLRP3 inhibitors. Compound 7 was found to be potent (IL-1β IC50 = 35 nM; IL-18 IC50 = 33 nM) and selective NLRP3 inflammasome inhibitor with excellent pharmacokinetic profile having oral bioavailability of 99% in mice.
Project description:Atherosclerosis is a maladaptive chronic inflammatory disease, which remains the leading cause of death worldwide. The NLRP3 inflammasome constitutes a major driver of atherosclerosis, yet the mechanism of action is poorly understood. Mitochondrial dysfunction is essential for NLRP3 inflammasome activation. However, whether activated NLRP3 inflammasome exacerbates mitochondrial dysfunction remains to be further elucidated. Herein, we sought to address these issues applying VX765, a well-established inhibitor of caspase 1. VX765 robustly restrains caspase 1-mediated interleukin-1β production and gasdermin D processing. Our study assigned VX765 a novel role in antagonizing NLRP3 inflammasome assembly and activation. VX765 mitigates mitochondrial damage induced by activated NLRP3 inflammasome, as evidenced by decreased mitochondrial ROS production and cytosolic release of mitochondrial DNA. VX765 blunts caspase 1-dependent cleavage and promotes mitochondrial recruitment and phosphorylation of Parkin, a key mitophagy regulator. Functionally, VX765 facilitates mitophagy, efferocytosis and M2 polarization of macrophages. It also impedes foam cell formation, migration and pyroptosis of macrophages. VX765 boosts autophagy, promotes efferocytosis, and alleviates vascular inflammation and atherosclerosis in both ApoE-/- and Ldlr-/- mice. However, these effects of VX765 were abrogated upon ablation of Nlrp3 in ApoE-/- mice. This work provides mechanistic insights into NLRP3 inflammasome assembly and this inflammasome in dictating atherosclerosis. This study highlights that manipulation of caspase 1 paves a new avenue to treatment of atherosclerotic cardiovascular disease.
Project description:The NLRP3 inflammasome is a multimeric cytosolic protein complex that assembles in response to cellular perturbations. This assembly leads to the activation of caspase-1, which promotes maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18, as well as inflammatory cell death (pyroptosis). The inflammatory cytokines contribute to the development of systemic low-grade inflammation, and aberrant NLRP3 activation can drive a chronic inflammatory state in the body to modulate the pathogenesis of inflammation-associated diseases. Therefore, targeting NLRP3 or other signaling molecules downstream, such as caspase-1, IL-1β or IL-18, has the potential for great therapeutic benefit. However, NLRP3 inflammasome-mediated inflammatory cytokines play dual roles in mediating human disease. While they are detrimental in the pathogenesis of inflammatory and metabolic diseases, they have a beneficial role in numerous infectious diseases and some cancers. Therefore, fine tuning of NLRP3 inflammasome activity is essential for maintaining proper cellular homeostasis and health. In this Review, we will cover the mechanisms of NLRP3 inflammasome activation and its divergent roles in the pathogenesis of inflammation-associated diseases such as cancer, atherosclerosis, diabetes and obesity, highlighting the therapeutic potential of targeting this pathway.
Project description:The NLRP3 inflammasome serves as a host defense mechanism against various pathogens, but there is growing evidence linking its activation in sterile condition to diverse inflammatory diseases. Therefore, the identification of specific inhibitors that target NLRP3 inflammasome activation is meaningful and important for novel therapies for NLRP3 inflammasome-associated diseases. In this study, we identified a chemical compound, namely ODZ10117 (ODZ), that showed NLRP3 inflammasome-targeting anti-inflammatory effects during the screening of a chemical library for anti-inflammatory activity. Although ODZ was initially discovered as a STAT3 inhibitor, here we found it also has inhibitory activity on NLRP3 inflammasome activation. ODZ inhibited the cleavage of caspase-1 and IL-1β-induced canonical NLRP3 inflammasome triggers, but had no effect on those induced by AIM2 or NLRC4 triggers. Mechanistically, ODZ impairs NLRP3 inflammasome activation through the inhibition of NLRP3-NEK7 interaction that is required for inflammasome formation. Moreover, the results obtained from the in silico docking experiment suggested that ODZ targets NLRP3 protein, which provides evidence for the specificity of ODZ to the NLRP3 inflammasome. Furthermore, ODZ administration significantly reduced MSU-induced IL-1β release and the mortality rate of mice with LPS-induced sepsis. Collectively, these results demonstrate a novel effect of ODZ10117 in regulating NLRP3 inflammasome activation both in vitro and in vivo, making it a promising candidate for the treatment of NLRP3-inflammasome-associated immune disorders and cancer.
Project description:The collateral effects of obesity/metabolic syndrome include inflammation and renal function decline. As renal disease in obesity can occur independently of hypertension and diabetes, other yet undefined causal pathological pathways must be present. Our study elucidate novel pathological pathways of metabolic renal injury through LDL-induced lipotoxicity and metainflammation. Our in vitro and in vivo analysis revealed a direct lipotoxic effect of metabolic overloading on tubular renal cells through a multifaceted mechanism that includes intralysosomal lipid amassing, lysosomal dysfunction, oxidative stress, and tubular dysfunction. The combination of these endogenous metabolic injuries culminated in the activation of the innate immune NLRP3 inflammasome complex. By inhibiting the sirtuin-1/LKB1/AMPK pathway, NLRP3 inflammasome dampened lipid breakdown, thereby worsening the LDL-induced intratubular phospholipid accumulation. Consequently, the presence of NLRP3 exacerbated tubular oxidative stress, mitochondrial damage and malabsorption during overnutrition. Altogether, our data demonstrate a causal link between LDL and tubular damage and the creation of a vicious cycle of excessive nutrients-NLRP3 activation-catabolism inhibition during metabolic kidney injury. Hence, this study strongly highlights the importance of renal epithelium in lipid handling and recognizes the role of NLRP3 as a central hub in metainflammation and immunometabolism in parenchymal non-immune cells.
Project description:ObjectivesInflammasomes induce maturation of the inflammatory cytokines IL-1β and IL-18, whose activity is associated with the pathophysiology of a wide range of infectious and inflammatory diseases. As validated therapeutic targets for the treatment of acute and chronic inflammatory diseases, there has been intense interest in developing small-molecule inhibitors to target inflammasome activity and reduce disease-associated inflammatory burden.MethodsWe examined the therapeutic potential of a novel small-molecule inhibitor, and associated derivatives, termed ADS032 to target and reduce inflammasome-mediated inflammation in vivo. In vitro, we characterised ADS032 function, target engagement and specificity.ResultsWe describe ADS032 as the first dual NLRP1 and NLRP3 inhibitor. ADS032 is a rapid, reversible and stable inflammasome inhibitor that directly binds both NLRP1 and NLRP3, reducing secretion and maturation of IL-1β in human-derived macrophages and bronchial epithelial cells in response to the activation of NLPR1 and NLRP3. ADS032 also reduced NLRP3-induced ASC speck formation, indicative of targeting inflammasome formation. In vivo, ADS032 reduced IL-1β and TNF-α levels in the serum of mice challenged i.p. with LPS and reduced pulmonary inflammation in an acute model of lung silicosis. Critically, ADS032 protected mice from lethal influenza A virus challenge, displayed increased survival and reduced pulmonary inflammation.ConclusionADS032 is the first described dual inflammasome inhibitor and a potential therapeutic to treat both NLRP1- and NLRP3-associated inflammatory diseases and also constitutes a novel tool that allows examination of the role of NLRP1 in human disease.
Project description:MCC950 is an orally bioavailable small molecule inhibitor of the NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome that exhibits remarkable activity in multiple models of inflammatory disease. Incubation of MCC950 with human liver microsomes, and subsequent analysis by HPLC-MS/MS, revealed a major metabolite, where hydroxylation of MCC950 had occurred on the 1,2,3,5,6,7-hexahydro-s-indacene moiety. Three possible regioisomers were synthesized, and coelution using HPLC-MS/MS confirmed the structure of the metabolite. Further synthesis of individual enantiomers and coelution studies using a chiral column in HPLC-MS/MS showed the metabolite was R-(+)- N-((1-hydroxy-1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-4-(2-hydroxypropan-2-yl)furan-2-sulfonamide (2a). Incubation of MCC950 with a panel of cytochrome P450 enzymes showed P450s 2A6, 2C9, 2C18, 2C19, 2J2, and 3A4 catalyze the formation of the major metabolite 2a, with a lower level of activity shown by P450s 1A2 and 2B6. All of the synthesized compounds were tested for inhibition of NLRP3-induced production of the pro-inflammatory cytokine IL-1β from human monocyte derived macrophages. The identified metabolite 2a was 170-fold less potent than MCC950, while one regioisomer had nanomolar inhibitory activity. These findings also give first insight into the SAR of the hexahydroindacene moiety.
Project description:Inhibition of inflammasome and pyroptotic pathways are promising strategies for clinical treatment of autoimmune and inflammatory disorders. MCC950, a potent inhibitor of the NLR-family inflammasome pyrin domain-containing 3 (NLRP3) protein, has shown encouraging results in animal models for a range of conditions; however, until now, no off-targets have been identified. Herein, we report the design, synthesis, and application of a novel photoaffinity alkyne-tagged probe for MCC950 (IMP2070) which shows direct engagement with NLRP3 and inhibition of inflammasome activation in macrophages. Affinity-based chemical proteomics in live macrophages identified several potential off-targets, including carbonic anhydrase 2 (CA2) as a specific target of IMP2070, and independent cellular thermal proteomic profiling revealed stabilization of CA2 by MCC950. MCC950 displayed noncompetitive inhibition of CA2 activity, confirming carbonic anhydrase as an off-target class for this compound. These data highlight potential biological mechanisms through which MCC950 and derivatives may exhibit off-target effects in preclinical or clinical studies.
Project description:The NLRP3 inflammasome, as an important component of the innate immune system, plays vital roles in various metabolic disorders. It has been reported that the NLRP3 inflammasome can be activated by a broad range of distinct stimuli, such as K+ efflux, mitochondrial dysfunction, lysosomal disruption and trans-Golgi disassembly, etc. However, there has been no well-established model for NLRP3 inflammasome activation so far, especially the underlying mechanisms for mitochondria in NLRP3 inflammasome activation remain elusive. Given that K+ efflux is a widely accepted nexus for triggering activation of NLRP3 inflammasome in most previous studies, we sought to elucidate the role of mitochondria in K+ efflux-induced NLRP3 inflammasome activation. Here, we demonstrated that inflammation activation by LPS evoked the expression of genes that involved in mitochondrial biogenesis and mitophagy, subsequently mitochondrial mass and mitochondrial membrane potential were also elevated, suggesting the contribution of mitochondria in inflammatory responses. Moreover, we inhibited mitochondrial biogenesis by silencing Tfam and genetic ablation of Tfam abolished the NLRP3 inflammasome activation induced by K+ efflux via release of mitochondrial DNA (mtDNA), as deprivation of cellular mtDNA by EtBr treatment could reverse inflammasome activation induced by K+ efflux. Collectively, we reveal that mtDNA release induced by K+ efflux in macrophages activates NLRP3 inflammasome, and propose that mitochondria may serve as a potential therapeutic target for NLRP3 inflammasome-related diseases.
Project description:The NLRP3 inflammasome is involved in a diverse range of inflammatory diseases. The activation of inflammasomes must be tightly regulated to prevent excessive inflammation, and the protein ubiquitination system is reported to be one of the ways in which inflammasome activation is regulated. However, the deubiquitination regulatory mechanisms of inflammasome activation remain elusive. Here, we demonstrated that USP22 (ubiquitin specific peptidase 22) promotes NLRP3 degradation and inhibits NLRP3 inflammasome activation. USP22 deficiency or in vivo silencing significantly increases alum-induced peritonitis and lipopolysaccharide-induced systemic inflammation. Mechanistically, USP22 inhibits NLRP3 inflammasome activation via the promotion of ATG5-mediated macroautophagy/autophagy. USP22 stabilizes ATG5 via decreasing K27- and K48-linked ubiquitination of ATG5 at the Lys118 site. Taken together, these findings reveal the role USP22 plays in the regulation of NLRP3 inflammasome activation and suggest a potential therapeutic target to treat NLRP3 inflammasome-related diseases.Abbreviations: ATG5: autophagy related 5; ATP: adenosine triphosphate; CASP1: caspase 1; IL18: interleukin 18; IL1B/IL-1β: interleukin 1 beta; LPS: lipopolysaccharide; NLRC4: NLR family, CARD domain containing 4; NLRP3: NLR family, pyrin domain containing 3; PYCARD/ASC: PYD and CARD domain containing; TNF/TNF-α: tumor necrosis factor; USP22: ubiquitin specific peptidase 22.