Unknown

Dataset Information

0

Electron-hole hybridization in bilayer graphene.


ABSTRACT: Band structure determines the motion of electrons in a solid, giving rise to exotic phenomena when properly engineered. Drawing an analogy between electrons and photons, artificially designed optical lattices indicate the possibility of a similar band modulation effect in graphene systems. Yet due to the fermionic nature of electrons, modulated electronic systems promise far richer categories of behaviors than those found in optical lattices. Here, we uncovered a strong modulation of electronic states in bilayer graphene subject to periodic potentials. We observed for the first time the hybridization of electron and hole sub-bands, resulting in local band gaps at both primary and secondary charge neutrality points. Such hybridization leads to the formation of flat bands, enabling the study of correlated effects in graphene systems. This work may provide a novel way to manipulate electronic states in layered systems, which is important to both fundamental research and application.

SUBMITTER: Wang S 

PROVIDER: S-EPMC8288876 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electron-hole hybridization in bilayer graphene.

Wang Siqi S   Zhao Mervin M   Zhang Changjian C   Yang Sui S   Wang Yuan Y   Watanabe Kenji K   Taniguchi Takashi T   Hone James J   Zhang Xiang X  

National science review 20191219 2


Band structure determines the motion of electrons in a solid, giving rise to exotic phenomena when properly engineered. Drawing an analogy between electrons and photons, artificially designed optical lattices indicate the possibility of a similar band modulation effect in graphene systems. Yet due to the fermionic nature of electrons, modulated electronic systems promise far richer categories of behaviors than those found in optical lattices. Here, we uncovered a strong modulation of electronic  ...[more]

Similar Datasets

| S-EPMC7564435 | biostudies-literature
| S-EPMC5599685 | biostudies-other
| S-EPMC6884409 | biostudies-literature
| S-EPMC5608950 | biostudies-literature
| S-EPMC4258647 | biostudies-literature
| S-EPMC8413270 | biostudies-literature
| S-EPMC4753444 | biostudies-literature
| S-EPMC4661528 | biostudies-literature
| S-EPMC4759825 | biostudies-literature
| S-EPMC10311585 | biostudies-literature