Project description:BackgroundEating disorders (ED) are chronic psychiatric disorders, common amongst women of reproductive age. ED in pregnancy are associated with poor nutrition and abnormal intrauterine growth. Increasing evidence also shows offspring of women with ED have adverse developmental and birth outcomes. We sought to carry out the first study investigating DNA methylation in offspring of women with ED. We compared cord blood DNA methylation in offspring of women with active ED (n = 21), past ED (n = 43) and age- and social class-matched controls (n = 126) as part of the Avon Longitudinal Study of Parents and Children.ResultsOffspring of women with both active and past ED had lower whole-genome methylation compared to controls (active ED 49.1% (95% confidence intervals 50.5-47.7%), past ED 49.2% (95% CI 50.7-47.7.0%), controls 52.4% (95% CI 53.0%-51.0%)). Amongst offspring of ED women, those born to women with restrictive-type and purging-type ED had lower methylation levels compared to those of controls. Offspring of women with an active restrictive ED in pregnancy had lower whole-genome methylation compared to offspring of women with past restrictive ED. We observed decreased methylation at the DHCR24 locus in offspring of women with active pregnancy ED (effect size (ES) = - 0.124, p = 6.94 × 10-8) and increased methylation at the LGALS2 locus in offspring of women with past ED (ES = 0.07, p = 3.74 × 10-7) compared to controls.ConclusionsMaternal active and past ED are associated with differences in offspring whole-genome methylation. Our results show altered DNA methylation in loci relevant to metabolism; these might be biomarkers of disrupted metabolic pathways in offspring of ED mothers. Further work is needed to examine potential mechanisms and functional outcomes of the observed methylation patterns.
Project description:Pre-pregnancy obesity is an established risk factor for adverse sex-specific cardiometabolic health in offspring. Epigenetic alterations, such as in DNA methylation (DNAm), are a hypothesized link; however, sex-specific epigenomic targets remain unclear. Leveraging data from the Newborn Epigenetics Study (NEST) cohort, linear regression models were used to identify CpG sites in cord blood leukocytes associated with pre-pregnancy obesity in 187 mother-female and 173 mother-male offsprings. DNAm in cord blood was measured using the Illumina HumanMethylation450k BeadChip. Replication analysis was conducted among the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Associations between pre-pregnancy obesity-associated CpG sites and offspring BMI z-score (BMIz) and blood pressure (BP) percentiles at 4-5-years of age were also examined. Maternal pre-pregnacy obesity was associated with 876 CpGs in female and 293 CpGs in male offspring (false discovery rate <5%). Among female offspring, 57 CpG sites, including the top 18, mapped to the TAPBP gene (range of effect estimates: -0.83% decrease to 4.02% increase in methylation). CpG methylation differences in the TAPBP gene were also observed among males (range of effect estimates: -0.30% decrease to 2.59% increase in methylation). While technically validated, none of the TAPBP CpG sites were replicated in ALSPAC. In NEST, methylation differences at CpG sites of the TAPBP gene were associated with BMI z-score (cg23922433 and cg17621507) and systolic BP percentile (cg06230948) in female and systolic (cg06230948) and diastolic (cg03780271) BP percentile in male offspring. Together, these findings suggest sex-specific effects, which, if causal, may explain observed sex-specific effects of maternal obesity.
Project description:The number of people who undergo medically assisted reproduction (MAR) to conceive has increased considerably in recent decades. However, existing research into the demographics and the partnership histories of this growing subgroup is limited. Using unique data from Finnish population registers on nulliparous women born in Finland in 1971-77 (n = 21,129; ∼10 per cent of all women) who had undergone MAR treatment, we created longitudinal partnership histories from age 16 until first MAR treatment. We identified six typical partnership trajectories and used relative frequency sequence plots to investigate heterogeneity in partnership transitions within and between these groups. The majority of women (60.7 per cent) underwent MAR with their first partner, followed by women who underwent MAR in a second (21.5 per cent) or higher-order partnership (7.1 per cent), while 10.7 per cent underwent MAR without a partner. On average, women undergoing MAR were relatively young (with around half starting treatment before age 30) and were highly educated with high incomes.
Project description:Cord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells, generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability. We evaluated differences in cell composition and DNA methylation between cord blood buffy coat and whole cord blood samples. Cord blood DNA methylation was measured with the Infinium EPIC BeadChip (Illumina) in eight individuals, each contributing buffy coat and whole blood samples. We analyzed principal components (PC) of methylation, performed hierarchical clustering, and computed correlations of mean-centered methylation between pairs. We conducted moderated t-tests on single sites and estimated cell composition. DNA methylation PCs were associated with individual (PPC1 = 1.4 × 10-9; PPC2 = 2.9 × 10-5; PPC3 = 3.8 × 10-5; PPC4 = 4.2 × 10-6; PPC5 = 9.9 × 10-13, PPC6 = 1.3 × 10-11) and not with sample type (PPC1-6>0.7). Samples hierarchically clustered by individual. Pearson correlations of mean-centered methylation between paired samples ranged from r = 0.66 to r = 0.87. No individual site significantly differed between buffy coat and whole cord blood when adjusting for multiple comparisons (five sites had unadjusted P<10-5). Estimated cell type proportions did not differ by sample type (P = 0.46), and estimated proportions were highly correlated between paired samples (r = 0.99). Differences in methylation and cell composition between buffy coat and whole cord blood are much lower than inter-individual variation, demonstrating that both sample preparation types can be analytically combined and compared.
Project description:BackgroundPrenatal symptoms of depression (PND) and anxiety affect up to every third pregnancy. Children of mothers with mental health problems are at higher risk of developmental problems, possibly through epigenetic mechanisms together with other factors such as genetic and environmental. We investigated DNA methylation in cord blood in relation to PND, taking into consideration a history of depression, co-morbidity with anxiety and selective serotonin reuptake inhibitors (SSRI) use, and stratified by sex of the child. Mothers (N = 373) prospectively filled out web-based questionnaires regarding mood symptoms and SSRI use throughout pregnancy. Cord blood was collected at birth and DNA methylation was measured using Illumina MethylationEPIC array at 850 000 CpG sites throughout the genome. Differentially methylated regions were identified using Kruskal-Wallis test, and Benjamini-Hochberg adjusted p-values < 0.05 were considered significant.ResultsNo differential DNA methylation was associated with PND alone; however, differential DNA methylation was observed in children exposed to comorbid PND with anxiety symptoms compared with healthy controls in ABCF1 (log twofold change - 0.2), but not after stratification by sex of the child. DNA methylation in children exposed to PND without SSRI treatment and healthy controls both differed in comparison with SSRI exposed children at several sites and regions, among which hypomethylation was observed in CpGs in the promoter region of CRBN (log2 fold change - 0.57), involved in brain development, and hypermethylation in MDFIC (log2 fold change 0.45), associated with the glucocorticoid stress response.ConclusionAlthough it is not possible to assess if these methylation differences are due to SSRI treatment itself or to more severe depression, our findings add on to existing knowledge that there might be different biological consequences for the child depending on whether maternal PND was treated with SSRIs or not.
Project description:Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) play complementary roles in follicle development and ovulation via a complex interaction in the hypothalamus, anterior pituitary gland, reproductive organs, and oocytes. Impairment of the production or action of gonadotropins causes relative or absolute LH and FSH deficiency that compromises gametogenesis and gonadal steroid production, thereby reducing fertility. In women, LH and FSH deficiency is a spectrum of conditions with different functional or organic causes that are characterized by low or normal gonadotropin levels and low oestradiol levels. While the causes and effects of reduced LH and FSH production are very well known, the notion of reduced action has received less attention by researchers. Recent evidence shows that molecular characteristics, signalling as well as ageing, and some polymorphisms negatively affect gonadotropin action. These findings have important clinical implications, in particular for medically assisted reproduction in which diminished action determined by the afore-mentioned factors, combined with reduced endogenous gonadotropin production caused by GnRH analogue protocols, may lead to resistance to gonadotropins and, thus, to an unexpected hypo-response to ovarian stimulation. Indeed, the importance of LH and FSH action has been highlighted by the International Committee for Monitoring Assisted Reproduction Technologies (ICMART) in their definition of hypogonadotropic hypogonadism as gonadal failure associated with reduced gametogenesis and gonadal steroid production due to reduced gonadotropin production or action. The aim of this review is to provide an overview of determinants of reduced FSH and LH action that are associated with a reduced response to ovarian stimulation.
Project description:Sperm DNA fragmentation has been associated with reduced fertilization rates, embryo quality, pregnancy rates and increased miscarriage rates. Various methods exist to test sperm DNA fragmentation such as the sperm chromatin structure assay (SCSA), the sperm chromatin dispersion (SCD) test, the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay and the single cell gel electrophoresis (Comet) assay. We performed a systematic review and meta-analysis to assess the value of measuring sperm DNA fragmentation in predicting chance of ongoing pregnancy with IVF or ICSI. Out of 658 unique studies, 30 had extractable data and were thus included in the meta-analysis. Overall, the sperm DNA fragmentation tests had a reasonable to good sensitivity. A wide variety of other factors may also affect the IVF/ICSI outcome, reflected by limited to very low specificity. The constructed hierarchical summary receiver operating characteristic (HSROC) curve indicated a fair discriminatory capacity of the TUNEL assay (area under the curve (AUC) of 0.71; 95% CI 0.66 to 0.74) and Comet assay (AUC of 0.73; 95% CI 0.19 to 0.97). The SCSA and the SCD test had poor predictive capacity. Importantly, for the TUNEL assay, SCD test and Comet assay, meta-regression showed no differences in predictive value between IVF and ICSI. For the SCSA meta-regression indicated the predictive values for IVF and ICSI were different. The present review suggests that current sperm DNA fragmentation tests have limited capacity to predict the chance of pregnancy in the context of MAR. Furthermore, sperm DNA fragmentation tests have little or no difference in predictive value between IVF and ICSI. At this moment, there is insufficient evidence to recommend the routine use of sperm DNA fragmentation tests in couples undergoing MAR both for the prediction of pregnancy and for the choice of treatment. Given the significant limitations of the evidence and the methodological weakness and design of the included studies, we do urge for further research on the predictive value of sperm DNA fragmentation for the chance of pregnancy after MAR, also in comparison with other predictors of pregnancy after MAR.
Project description:This study aims to evaluate the association of maternal DNA methylation (DNAm) during pregnancy and offspring birthweight. One hundred twenty-two newborn-mother dyads from the Isle of Wight (IOW) cohort were studied to identify differentially methylated cytosine-phosphate-guanine sites (CpGs) in maternal blood associated with offspring birthweight. Peripheral blood samples were drawn from mothers at 22-38 weeks of pregnancy for epigenome-wide DNAm assessment using the Illumina Infinium HumanMethylation450K array. Candidate CpGs were identified using a course of 100 repetitions of a training and testing process with robust regressions. CpGs were considered informative if they showed statistical significance in at least 80% of training and testing samples. Linear mixed models adjusting for covariates were applied to further assess the selected CpGs. The Swedish Born Into Life cohort was used to replicate our findings (n = 33). Eight candidate CpGs corresponding to the genes LMF1, KIF9, KLHL18, DAB1, VAX2, CD207, SCT, SCYL2, DEPDC4, NECAP1, and SFRS3 in mothers were identified as statistically significantly associated with their children's birthweight in the IOW cohort and confirmed by linear mixed models after adjusting for covariates. Of these, in the replication cohort, three CpGs (cg01816814, cg23153661, and cg17722033 with p values = 0.06, 0.175, and 0.166, respectively) associated with four genes (LMF1, VAX2, CD207, and NECAP1) were marginally significant. Biological pathway analyses of three of the genes revealed cellular processes such as endocytosis (possibly sustaining an adequate maternal-fetal interface) and metabolic processes such as regulation of lipoprotein lipase activity (involved in providing substrates for the developing fetus). Our results contribute to an epigenetic understanding of maternal involvement in offspring birthweight. Measuring DNAm levels of maternal CpGs may in the future serve as a diagnostic tool recognizing mothers at risk for pregnancies ending with altered birthweights.
Project description:Study questionWhat is the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the outcome of a pregnancy after medically assisted reproduction (MAR)?Summary answerOur results suggest that MAR pregnancies are not differentially affected by SARS-CoV-2 infection compared to spontaneous pregnancies.What is known alreadyInformation on the effects of coronavirus disease 2019 (COVID-19) on pregnancy after MAR is scarce when women get infected during MAR or early pregnancy, even though such information is vital for informing women seeking pregnancy.Study design, size, durationData from SARS-CoV-2 affected MAR pregnancies were collected between May 2020 and June 2021 through a voluntary data collection, organised by the European Society of Human Reproduction and Embryology (ESHRE).Participants/materials, setting, methodsAll ESHRE members were invited to participate to an online data collection for SARS-CoV-2-infected MAR pregnancies.Main results and the role of chanceThe dataset includes 80 cases from 32 countries, including 67 live births, 10 miscarriages, 2 stillbirths and 1 maternal death. An additional 25pregnancies were ongoing at the time of writing.Limitations, reasons for cautionAn international data registry based on voluntary contribution can be subject to selective reporting with possible risks of over- or under-estimation.Wider implications of the findingsThe current data can be used to guide clinical decisions in the care of women pregnant after MAR, in the context of the COVID-19 pandemic.Study funding/competing interest(s)The authors acknowledge the support of ESHRE for the data registry and meetings. J.S.T. reports grants or contracts from Sigrid Juselius Foundation, EU and Helsinki University Hospital Funds, outside the scope of the current work. The other authors declare that they have no conflict of interest.Trial registration numberN/A.
Project description:The aim of the study was to investigate whether maternal mid-pregnancy 25-hydroxyvitamin D concentrations are associated with cord blood DNA methylation. DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip, and maternal plasma 25-hydroxyvitamin D was measured in 819 mothers/newborn pairs participating in the Norwegian Mother and Child Cohort (MoBa) and 597 mothers/newborn pairs participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Across 473,731CpG DNA methylation sites in cord blood DNA, none were strongly associated with maternal 25-hydroxyvitamin D after adjusting for multiple tests (false discovery rate (FDR)>0.5; 473,731 tests). A meta-analysis of the results from both cohorts, using the Fisher method for combining p-values, also did not strengthen findings (FDR>0.2). Further exploration of a set of CpG sites in the proximity of four a priori defined candidate genes (CYP24A1, CYP27B1, CYP27A1 and CYP2R1) did not result in any associations with FDR<0.05 (56 tests). In this large genome wide assessment of the potential influence of maternal vitamin D status on DNA methylation, we did not find any convincing associations in 1416 newborns. If true associations do exist, their identification might require much larger consortium studies, expanded genomic coverage, investigation of alternative cell types or measurements of 25-hydroxyvitamin D at different gestational time points.