Unknown

Dataset Information

0

A Novel Cognition-Guided Neurofeedback BCI Dataset on Nicotine Addiction.


ABSTRACT: Compared with the traditional neurofeedback paradigm, the cognition-guided neurofeedback brain-computer interface (BCI) is a novel paradigm with significant effect on nicotine addiction. However, the cognition-guided neurofeedback BCI dataset is extremely lacking at present. This paper provides a BCI dataset based on a novel cognition-guided neurofeedback on nicotine addiction. Twenty-eight participants are recruited and involved in two visits of neurofeedback training. This cognition-guided neurofeedback includes two phases: an offline classifier construction and a real-time neurofeedback training. The original electroencephalogram (EEG) raw data of two phases are provided and evaluated in this paper. The event-related potential (ERP) amplitude and channel waveform suggest that our BCI dataset is of good quality and consistency. During neurofeedback training, the participants' smoking cue reactivity patterns have a significant reduction. The mean accuracy of the multivariate pattern analysis (MVPA) classifier can reach approximately 70%. This novel cognition-guided neurofeedback BCI dataset can be used to develop comparisons with other neurofeedback systems and provide a reference for the development of other BCI algorithms and neurofeedback paradigms on addiction.

SUBMITTER: Bu J 

PROVIDER: S-EPMC8290081 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8091956 | biostudies-literature
| S-EPMC6501944 | biostudies-literature
| S-EPMC7163392 | biostudies-literature
| S-EPMC5755398 | biostudies-literature
| S-EPMC3137256 | biostudies-literature
| S-EPMC3847114 | biostudies-literature
| S-EPMC1348008 | biostudies-literature
| S-EPMC3055474 | biostudies-literature
2019-11-09 | GSE140142 | GEO
2019-09-10 | GSE137118 | GEO