Unknown

Dataset Information

0

Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris.


ABSTRACT:

Background

Pichia pastoris (syn. Komagataella phaffii) is an important yeast system for heterologous protein expression. A robust P. pastoris mutant with oxidative and thermal stress cross-tolerance was acquired in our previous study. The robust mutant can express a 2.5-fold higher level of lipase than its wild type (WT) under methanol induction conditions.

Results

In this study, we found that the robust mutant not only can express a high level of lipase, but also can express a high level of other heterogeneous proteins (e.g., green fluorescence protein) under methanol induction conditions. Additionally, the intracellular reactive oxygen species (ROS) levels in the robust mutant were lower than that in the WT under methanol induction conditions. To figure out the difference of cellular response to methanol between the WT and the robust mutant, RNA-seq was detected and compared. The results of RNA-seq showed that the expression levels of genes related to antioxidant, MAPK pathway, ergosterol synthesis pathway, transcription factors, and the peroxisome pathway were upregulated in the robust mutant compared to the WT. The upregulation of these key pathways can improve the oxidative stress tolerance of strains and efficiently eliminate cellular ROS. Hence, we inferred that the high heterologous protein expression efficiency in the robust mutant may be due to its enhanced oxidative stress tolerance. Promisingly, we have indeed increased the expression level of lipase up to 1.6-fold by overexpressing antioxidant genes in P. pastoris.

Conclusions

This study demonstrated the impact of methanol on the expression levels of genes in P. pastoris and emphasized the contribution of oxidative stress tolerance on heterologous protein expression in P. pastoris. Our results shed light on the understanding of protein expression mechanism in P. pastoris and provided an idea for the rational construction of robust yeast with high expression ability.

SUBMITTER: Lin NX 

PROVIDER: S-EPMC8290557 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5552330 | biostudies-literature
| S-EPMC6624476 | biostudies-literature
| S-EPMC7075855 | biostudies-literature
2023-04-01 | GSE224837 | GEO
2019-12-20 | GSE142326 | GEO
2018-12-01 | GSE116415 | GEO
| S-EPMC6956495 | biostudies-literature
| S-EPMC4094982 | biostudies-literature
| S-EPMC4909809 | biostudies-literature
| S-EPMC1712348 | biostudies-literature