Unknown

Dataset Information

0

Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores.


ABSTRACT: In nature, sequential harvesting of light widely exists in the old life entity, i.e. cyanobacteria, to maximize the light absorption and enhance the photosynthesis efficiency. Inspired by nature, we propose a brand new concept of temporally-spatially sequential harvesting of light in one single particle, which has purpose-designed heterogeneous hollow multi-shelled structures (HoMSs) with porous shells composed of nanoparticle subunits. Structurally, HoMSs consist of different band-gap materials outside-in, thus realizing the efficient harvesting of light with different wavelengths. Moreover, introducing oxygen vacancies into each nanoparticle subunit can also enhance the light absorption. With the benefit of sequential harvesting of light in HoMSs, the quantum efficiency at wavelength of 400 nm is enhanced by six times compared with the corresponding nanoparticles. Impressively, using these aforementioned materials as photocatalysts, highly efficient photocatalytic water splitting is realized, which cannot be achieved by using the nanoparticle counterparts. This new concept of temporally-spatially sequential harvesting of solar light paves the way for solving the ever-growing energy demand.

SUBMITTER: Wei Y 

PROVIDER: S-EPMC8290956 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores.

Wei Yanze Y   Wan Jiawei J   Yang Nailiang N   Yang Yu Y   Ma Yanwen Y   Wang Songcan S   Wang Jiangyan J   Yu Ranbo R   Gu Lin L   Wang Lianhui L   Wang Lianzhou L   Huang Wei W   Wang Dan D  

National science review 20200408 11


In nature, sequential harvesting of light widely exists in the old life entity, i.e. cyanobacteria, to maximize the light absorption and enhance the photosynthesis efficiency. Inspired by nature, we propose a brand new concept of temporally-spatially sequential harvesting of light in one single particle, which has purpose-designed heterogeneous hollow multi-shelled structures (HoMSs) with porous shells composed of nanoparticle subunits. Structurally, HoMSs consist of different band-gap materials  ...[more]

Similar Datasets

| S-EPMC6473427 | biostudies-literature
| S-EPMC7221611 | biostudies-literature
| S-EPMC8708830 | biostudies-literature
| S-EPMC9795417 | biostudies-literature
| S-EPMC5792828 | biostudies-literature
| S-EPMC6644388 | biostudies-literature
| S-EPMC4030624 | biostudies-literature
| S-EPMC10303442 | biostudies-literature
| S-EPMC4229659 | biostudies-other
| S-EPMC10162477 | biostudies-literature