Unknown

Dataset Information

0

A general mechanism of KCNE1 modulation of KCNQ1 channels involving non-canonical VSD-PD coupling.


ABSTRACT: Voltage-gated KCNQ1 channels contain four separate voltage-sensing domains (VSDs) and a pore domain (PD). KCNQ1 expressed alone opens when the VSDs are in an intermediate state. In cardiomyocytes, KCNQ1 co-expressed with KCNE1 opens mainly when the VSDs are in a fully activated state. KCNE1 also drastically slows the opening of KCNQ1 channels and shifts the voltage dependence of opening by >40 mV. We here show that mutations of conserved residues at the VSD-PD interface alter the VSD-PD coupling so that the mutant KCNQ1/KCNE1 channels open in the intermediate VSD state. Using recent structures of KCNQ1 and KCNE beta subunits in different states, we present a mechanism by which KCNE1 rotates the VSD relative to the PD and affects the VSD-PD coupling of KCNQ1 channels in a non-canonical way, forcing KCNQ1/KCNE1 channels to open in the fully-activated VSD state. This would explain many of the KCNE1-induced effects on KCNQ1 channels.

SUBMITTER: Wu X 

PROVIDER: S-EPMC8292421 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4019390 | biostudies-literature
| S-EPMC7584456 | biostudies-literature
| S-EPMC9726718 | biostudies-literature
| S-EPMC3514736 | biostudies-literature
| S-EPMC6684268 | biostudies-literature
| S-EPMC7287213 | biostudies-literature
| S-EPMC3070781 | biostudies-literature
| S-EPMC3853315 | biostudies-literature
| S-EPMC3045044 | biostudies-literature
| S-EPMC5159502 | biostudies-literature