Unknown

Dataset Information

0

Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex.


ABSTRACT: Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of Lpar1-EGFP SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels, a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then - during the later time window - acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that Lpar1-EGFP SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.

SUBMITTER: Ghezzi F 

PROVIDER: S-EPMC8294844 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6433913 | biostudies-literature
| S-EPMC8408454 | biostudies-literature
| S-EPMC7613627 | biostudies-literature
| S-EPMC3240726 | biostudies-literature
| S-EPMC4380001 | biostudies-literature
| S-EPMC2705692 | biostudies-literature
| S-EPMC4696889 | biostudies-literature
| S-EPMC8099888 | biostudies-literature
| S-EPMC8152836 | biostudies-literature
| S-EPMC8788860 | biostudies-literature