3D Particle Free Printing of Biocompatible Conductive Hydrogel Platforms for Neuron Growth and Electrophysiological Recording.
Ontology highlight
ABSTRACT: Electrically conductive 3D periodic microscaffolds are fabricated using a particle-free direct ink writing approach for use as neuronal growth and electrophysiological recording platforms. A poly (2-hydroxyethyl methacrylate) (pHEMA)/pyrrole ink, followed by chemical in situ polymerization of pyrrole, enables hydrogel printing through nozzles as small as 1 μm. These conductive hydrogels can pattern complex 2D and 3D structures and have good biocompatibility with test cell cultures (~94.5% viability after 7 days). Hydrogel arrays promote extensive neurite outgrowth of cultured Aplysia californica pedal ganglion neurons. This platform allows extracellular electrophysiological recording of steady-state and stimulated electrical neuronal activities. In summation, this 3D conductive ink printing process enables preparation of biocompatible and micron-sized structures to create customized in vitro electrophysiological recording platforms.
SUBMITTER: Wang C
PROVIDER: S-EPMC8297588 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA