Plant uptake of nitrogen adsorbed to biochars made from dairy manure.
Ontology highlight
ABSTRACT: The conversion of dairy waste with high moisture contents to dry fertilizers may reduce environmental degradation while lowering crop production costs. We converted the solid portion of screw-pressed dairy manure into a sorbent for volatile ammonia (NH3) in the liquid fraction using pyrolysis and pre-treatment with carbon dioxide (CO2). The extractable N in manure biochar exposed to NH3 following CO2 pre-treatment reached 3.36 g N kg-1, 1260-fold greater extractable N than in untreated manure biochar. Ammonia exposure was 142-times more effective in increasing extractable N than immersing manure biochar in the liquid fraction containing dissolved ammonium. Radish and tomato grown in horticultural media with manure biochar treated with CO2 + NH3 promoted up to 35% greater plant growth (dry weight) and 36-83% greater N uptake compared to manure biochar alone. Uptake of N was similar between plants grown with wood biochar exposed to CO2 + NH3, compared to N-equivalent treatments. The available N in dairy waste in New York (NY) state, if pyrolyzed and treated with NH3 + CO2, is equivalent to 11,732-42,232 Mg N year-1, valued at 6-21.5 million USD year-1. Separated dairy manure treated with CO2 + NH3 can offset 23-82% of N fertilizer needs of NY State, while stabilizing both the solid and liquid fraction of manure for reduced environmental pollution.
SUBMITTER: Krounbi L
PROVIDER: S-EPMC8298528 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA