Project description:Recent investigations identified heterozygous CFC1 mutations in subjects with heterotaxy syndrome, all of whom had congenital cardiac malformations, including malposition of the great arteries. We hypothesized that a subset of patients with similar types of congenital heart disease---namely, transposition of the great arteries and double-outlet right ventricle, in the absence of laterality defects---would also have CFC1 mutations. Our analysis of the CFC1 gene in patients with these cardiac disorders identified two disease-related mutations in 86 patients. The present study identifies the first autosomal single-gene defect for these cardiac malformations and indicates that some cases of transposition of the great arteries and double-outlet right ventricle can share a common genetic etiology with heterotaxy syndrome. In addition, these results demonstrate that the molecular pathway involving CFC1 plays a critical role in normal and abnormal cardiovascular development.
Project description:Disease causing mutations for heterotaxy syndrome were first identified in the X-linked laterality gene, ZIC3. Mutations typically result in males with situs ambiguus and complex congenital heart disease; however affected females and one male with isolated d-transposition of the great arteries (d-TGA) have been reported. We hypothesized that a subset of patients with heart defects common to heterotaxy but without laterality defects would have ZIC3 mutations. We also sought to estimate the prevalence of ZIC3 mutations in sporadic heterotaxy. Patients with TGA (n = 169), double outlet right ventricle (DORV; n = 89), common atrioventricular canal (CAVC; n = 41), and heterotaxy (n = 54) underwent sequencing of ZIC3 exons. We tested 90 patients with tetralogy of Fallot (TOF) to correlate genotype with phenotype. Three potentially disease-related missense mutations were detected: c.49G > T (Gly17Cys) in a female with isolated DORV, c.98C > T (Ala33Val) in a male with isolated d-TGA, and c.841C > T (His281Tyr) in a female with sporadic heterotaxy. We also identified a novel insertion (CPFP333ins) in a family with heterotaxy. All were absent in 200 control patients and the 1000 Genomes Project (n = 629). No significant mutations were found in patients with TOF. Functional studies demonstrated reduced transcriptional activity of the ZIC3 His281Tyr mutant protein. ZIC3 mutations were rarely identified in isolated DORV and d-TGA suggesting that a subset of DORV and d-TGA may fall within the spectrum of laterality defects. ZIC3 mutations were found in 3.7% of patients with sporadic heterotaxy; therefore testing should be considered in patients with heterotaxy.
Project description:BackgroundThe incidence of ventricular tachycardia (VT) in patients following Fontan operation is reported as 3.5%. Furthermore, in patients with repaired double outlet right ventricle (DORV), scar-related VT and outflow tract VT have been reported; however, Purkinje-related VT has not previously been reported. In this report, we present the case of idiopathic left VT (ILVT) in a patient with DORV who underwent Fontan operation.Case summaryA 31-year-old man was diagnosed as having DORV with complete atrioventricular defect at birth. When he was 17 years old, he underwent surgical repair, including extracardiac Fontan operation and common atrioventricular valve replacement. Five years later, VT was detected. Since some medications were ineffective in suppressing VT, he was referred to our hospital for definitive treatment. Ventricular tachycardia was induced by atrial and ventricular programmed electrical stimulations. The mechanism of the VT was determined to be re-entry. The earliest activation site was located at the mid-inferior septum of the hypoplastic left ventricle, in which Purkinje potentials were observed before the local ventricular electrogram. Radiofrequency catheter ablation (RFCA) was performed at this site to eliminate VT.DiscussionMost VTs originate from surgical scars in patients with congenital heart disease. Catheter ablation was feasible in scar-related VT. To the best of our knowledge, this is the first report of ILVT treated successfully with RFCA in a DORV patient who had undergone Fontan operation.
Project description:Defining the pathways that control cardiac development facilitates understanding the pathogenesis of congenital heart disease. Herein, we identify enrichment of a Cullin5 Ub ligase key subunit, Asb2, in myocardial progenitors and differentiated cardiomyocytes. Using two conditional murine knockouts, Nkx+/Cre.Asb2fl/fl and AHF-Cre.Asb2fl/fl, and tissue clarifying technique, we reveal Asb2 requirement for embryonic survival and complete heart looping. Deletion of Asb2 results in upregulation of its target Filamin A (Flna), and concurrent Flna deletion partially rescues embryonic lethality. Conditional AHF-Cre.Asb2 knockouts harboring one Flna allele have double outlet right ventricle (DORV), which is rescued by biallelic Flna excision. Transcriptomic and immunofluorescence analyses identify Tgf?/Smad as downstream targets of Asb2/Flna. Finally, using CRISPR/Cas9 genome editing, we demonstrate Asb2 requirement for human cardiomyocyte differentiation suggesting a conserved mechanism between mice and humans. Collectively, our study provides deeper mechanistic understanding of the role of the ubiquitin proteasome system in cardiac development and suggests a previously unidentified murine model for DORV.
Project description:BackgroundDouble-outlet right ventricle (DORV) with a restrictive ventricular septum is a rare but highly morbid phenomenon that can be complicated by progressive left ventricular hypertrophy, arrhythmias, aneurysm formation, severe pulmonary hypertension, and death in the newborn. Surgical creation or enlargement of a ventricular septal defect (VSD) is palliative but may damage the conduction system or the atrioventricular valves in the newborn. This report presents a transcatheter approach to palliation for a newborn that had DORV with a restrictive ventricular septum.Methods/resultsA full-term infant girl (2.9 kg) referred for hypoxia (80% with room air) and murmur was found to have DORV, interrupted inferior vena cava, and restrictive VSD (95-mmHg gradient). Transhepatic access was performed, and an internal mammary (IM) catheter was advanced through the atrial septal defect and into the left ventricle. By transesophageal echocardiographic guidance, a Baylis radiofrequency perforation wire was used to cross the ventricular septum, and the defect was enlarged using a 4-mm cutting balloon. A bare metal stent then was deployed to maintain the newly created VSD. The patient did well after the procedure but required pulmonary artery banding 4 days later. She returned 5 months later with cyanosis and the development of obstructing right ventricle muscle bundles, requiring further surgical palliation.ConclusionsThis report describes the first transcatheter creation of VSD in DORV with a restrictive ventricular septum in a newborn infant. Use of the radiofrequency catheter in combination with cutting balloon dilation and stent implantation is an efficient method for creating a VSD in such a patient.
Project description:GATA transcription factors are evolutionary conserved zinc finger proteins with multiple roles in cell differentiation/proliferation and organogenesis. GATA5 is only transiently expressed in the embryonic heart, and the inactivation of both Gata5 alleles results in a partially penetrant bicuspid aortic valve (BAV) phenotype in mice. We hypothesized that only biallelic mutations in GATA5 could be disease causing.A total of 185 patients with different forms of congenital heart disease (CHD) were screened along 150 healthy individuals for GATA4, 5, and 6. All patients' phenotypes were diagnosed with echocardiography.Sequencing results revealed eight missense variants (three of which are novel) in cases with various conotruncal and septal defects. Out of these, two were inherited in recessive forms: the p.T67P variant, which was found both in patients and in healthy individuals, and the previously described p.Y142H variant which was only found in a patient with a double outlet right ventricle (DORV). We characterized the p.Y142H variant and showed that it significantly reduced the transcriptional activity of the protein over cardiac promoters by 30-40%.Our results do prove that p.Y142H is associated with DORV and suggests including GATA5 as a potential gene to be screened in patients with this phenotype.
Project description:We present a rare case of double-outlet right ventricle with pulmonary atresia and discontinuous branch pulmonary arteries supplied by bilateral ducti from a right aortic arch. To our knowledge, this is only the second documented case of double-outlet right ventricle with bilateral ducti. (Level of Difficulty: Advanced.).
Project description:An unguarded atrioventricular orifice is an extremely rare congenital anomaly characterized by the absence of the atrioventricular valve in varying proportions. While atresia of the mitral or aortic valves are usually described as causes for hypoplastic left heart, our case highlights the role of free atrioventricular valve regurgitation and consequent volume loss of the left heart, giving rise to a small left ventricle. There was an associated double-outlet right ventricle and Type B aortic interruption. While we have attempted to discuss the complex management options in this scenario, the parents decided to withdraw further care.
Project description:BackgroundIn this case report, we utilized a three-dimensional printing model to replicate the complex anatomy of a criss-cross heart with double outlet right ventricle-an extremely rare congenital cardiac abnormality. This approach facilitated our understanding of the patient's unique condition and enabled us to plan the surgical procedure with greater precision.Case presentationOur department received a 13-year-old female patient who presented with a pronounced heart murmur and a decrease in exercise capacity. Subsequent two-dimensional imaging revealed the presence of a criss-cross heart with double outlet right ventricle-an intricate and uncommon cardiac malformation that poses challenges for accurate visualization through conventional two-dimensional modalities. To address this challenge, we constructed and printed a three-dimensional model using computed tomography data, which enabled us to visualize and understand the complex intracardiac structures and plan surgical interventions with greater precision. Using this approach, we successfully performed a right ventricular double outlet repair, and the patient made a full recovery following the procedure.ConclusionThe criss-cross heart with double outlet right ventricle constitutes a complex and uncommon cardiac anomaly that poses considerable challenges in terms of diagnosis and surgical intervention. Employing three-dimensional modeling and printing represents a promising approach, given its potential to enhance the precision and comprehensiveness of the anatomical evaluation of the heart. As a result, this method holds significant promise in facilitating accurate diagnosis, meticulous surgical planning, and ultimately improving clinical outcomes for patients affected by this condition.