Project description:Development of specific IgE antibodies to the oligosaccharide galactose-α-1, 3-galactose (α-gal) following tick bites has been shown to be the source of red meat allergy. In this study, we investigated the presence of α-gal in four tick species: the lone-star tick (Amblyomma americanum), the Gulf-Coast tick (Amblyomma maculatum), the American dog tick (Dermacentor variabilis), and the black-legged tick (Ixodes scapularis) by using a combination of immunoproteomic approach and, carbohydrate analysis. Anti-α-gal antibodies identified α-gal in the salivary glands of both Am. americanum and Ix. scapularis, while Am. maculatum and De. variabilis appeared to lack the carbohydrate. PNGase F treatment confirmed the deglycosylation of N-linked α-gal-containing proteins in tick salivary glands. Immunolocalization of α-gal moieties to the salivary secretory vesicles of the salivary acini also confirmed the secretory nature of α-gal-containing antigens in ticks. Am. americanum ticks were fed on human blood (lacks α-gal) using a silicone membrane system to determine the source of the α-gal. N-linked glycan analysis revealed that Am. americanum and Ix. scapularis have α-gal in their saliva and salivary glands, but Am. maculatum contains no detectable quantity. Consistent with the glycan analysis, salivary samples from Am. americanum and Ix. scapularis stimulated activation of basophils primed with plasma from α-gal allergic subjects. Together, these data support the idea that bites from certain tick species may specifically create a risk for the development of α-gal-specific IgE and hypersensitivity reactions in humans. Alpha-Gal syndrome challenges the current food allergy paradigm and broadens opportunities for future research.
Project description:BACKGROUND:Glycoproteins and glycolipids of some mammalian species contain the disaccharide galactosyl-?-(1,3)-galactose (?-Gal). It is known that ?-Gal is immunogenic in humans and causes glycan-specific IgG and also IgE responses with clinical relevance. ?-Gal is part of the IgE-reactive monoclonal therapeutic antibody cetuximab (CTX) and is associated with delayed anaphylaxis to red meat. In this study, different ?-Gal-containing analytes are examined in singleplex and multiplex assays to resolve individual sensitization patterns with IgE against ?-Gal. METHODS:Three serum groups, ?-Gal-associated meat allergy (MA) patients, idiopathic anaphylaxis (IA) patients with suspected MA, and non-meat-allergic healthy control individuals (HC), were analyzed via singleplex allergy diagnostics and a newly established immunoblot diagnostic system. The new dot blot detection system resolved individual IgE sensitization profiles for ?-Gal-containing analytes CTX, bovine thyroglobulin (Bos d TG), and human serum albumin (HSA)-conjugated ?-Gal. RESULTS:Singleplex allergy diagnostics using the ?-Gal analytes CTX and Bos d TG confirms the history of MA patients in 91% and 88% of the cases, respectively. A novel dot blot-based assay system for the detection of IgE against ?-Gal reveals individual IgE sensitization profiles for ?-Gal-containing analytes. An ?-Gal-associated IgE cross-reactivity profile (IgE against CTX, Bos d TG, and HSA-?-Gal) was identified, which is associated with MA. CONCLUSIONS:Detection of individual sensitization patterns with different ?-Gal-containing analytes provides the basis for an individual allergy diagnosis for ?-Gal-sensitized patients. Higher amounts of ?-Gal in pork and beef innards compared to muscle meat as indicated by a higher staining intensity are a plausible explanation for the difference in allergic symptom severity.
Project description:BackgroundRed meat allergy has historically been understood as a rare disease of atopic children, but the discovery of the "α-Gal syndrome," which relates to IgE to the oligosaccharide galactose-α-1,3-galactose (α-Gal), has challenged that notion.ObjectiveTo describe the clinical and immunologic characteristics of a large group of subjects with self-reported allergy to mammalian meat.MethodsThis was an observational study of 261 children and adults (range, 5-82 years) who presented for evaluation for allergic reactions to mammalian meat. Results were based on serum assays and a detailed questionnaire.Resultsα-Gal specific IgE ≥ 0.35 IU/mL was detected in 245 subjects and symptom onset occurred ≥2 hours after eating mammalian meat in 211 (81%). Component testing supported a diagnosis of α-Gal syndrome in 95%, pork-cat syndrome in 1.9%, and primary beef allergy in 1.1%. Urticaria was reported by 93%, anaphylaxis by 60%, and gastrointestinal symptoms by 64%. Levels of IgE and IgG specific to α-Gal were similar in subjects who reported early- or delayed-onset symptoms, and in those with and without anaphylaxis. Levels of α-Gal specific IgE and severity of reactions were similar among those with and without traditional atopy, and among children (n = 35) and adults (n = 226). Blood group B trended toward being under-represented among α-Gal-sensitized subjects; however, α-Gal specific IgE titers were high in symptomatic cases with B-antigen.ConclusionsThe α-Gal syndrome is a regionally common form of food allergy that has a characteristic but not universal delay in symptom onset, includes gastrointestinal symptoms, can develop at any time in life, and is equally common in otherwise nonatopic individuals.
Project description:BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: Screening a cDNA library in association with RT-PCR and RACE methodologies allowed us to identify 14 new lipocalin genes in the salivary glands of the Ixodes ricinus hard tick. A computational in-depth structural analysis confirmed that LIRs belong to the lipocalin family. These proteins were called LIR for "Lipocalin from I. ricinus" and numbered from 1 to 14 (LIR1 to LIR14). According to their percentage identity/similarity, LIR proteins may be assigned to 6 distinct phylogenetic groups. The mature proteins have calculated pM and pI varying from 21.8 kDa to 37.2 kDa and from 4.45 to 9.57 respectively. In a western blot analysis, all recombinant LIRs appeared as a series of thin bands at 50-70 kDa, suggesting extensive glycosylation, which was experimentally confirmed by treatment with N-glycosidase F. In addition, the in vivo expression analysis of LIRs in I. ricinus, examined by RT-PCR, showed homogeneous expression profiles for certain phylogenetic groups and relatively heterogeneous profiles for other groups. Finally, we demonstrated that LIR6 codes for a protein that specifically binds leukotriene B4. CONCLUSIONS/SIGNIFICANCE: This work confirms that, regarding their biochemical properties, expression profile, and sequence signature, lipocalins in Ixodes hard tick genus, and more specifically in the Ixodes ricinus species, are segregated into distinct phylogenetic groups suggesting potential distinct function. This was particularly demonstrated by the ability of LIR6 to scavenge leukotriene B4. The other LIRs did not bind any of the ligands tested, such as 5-hydroxytryptamine, ADP, norepinephrine, platelet activating factor, prostaglandins D2 and E2, and finally leukotrienes B4 and C4.
Project description:BackgroundIn recent years, there have been several sialome projects revealing transcripts expressed in the salivary glands of ticks, which are important vectors of several human diseases. Here, we focused on the sialome of the European vector of Lyme disease, Ixodes ricinus.ResultsIn the attempt to describe expressed genes and their dynamics throughout the feeding period, we constructed cDNA libraries from four different feeding stages of Ixodes ricinus females: unfed, 24 hours after attachment, four (partially fed) and seven days (fully engorged) after attachment. Approximately 600 randomly selected clones from each cDNA library were sequenced and analyzed. From a total 2304 sequenced clones, 1881 sequences forming 1274 clusters underwent subsequent functional analysis using customized bioinformatics software. Clusters were sorted according to their predicted function and quantitative comparison among the four libraries was made. We found several groups of over-expressed genes associated with feeding that posses a secretion signal and may be involved in tick attachment, feeding or evading the host immune system. Many transcripts clustered into families of related genes with stage-specific expression. Comparison to Ixodes scapularis and I. pacificus transcripts was made.ConclusionIn addition to a large number of homologues of the known transcripts, we obtained several novel predicted protein sequences. Our work contributes to the growing list of proteins associated with tick feeding and sheds more light on the dynamics of the gene expression during tick feeding. Additionally, our results corroborate previous evidence of gene duplication in the evolution of ticks.
Project description:The salivary gland of hard ticks is a highly innervated tissue where multiple intertwined axonal projections enter each individual acini. In the present study, we investigated the ultrastructural architecture of axonal projections within granular salivary gland type II and III acini of Ixodes ricinus female. Using immunogold labeling, we specifically examined the associations of SIFamide neuropeptide, SIFamide receptor (SIFa_R), neuropeptide pigment dispersing factor (PDF), and the invertebrate-specific D1-like dopamine receptor (InvD1L), with acinar cells. In both acini types, SIFamide-positive axons were found to be in direct contact with either basal epithelial cells or a single adlumenal myoepithelial cell in close proximity to the either the acinar duct or its valve, respectively. Accordingly, SIFa_R staining correlated with SIFamide-positive axons in both basal epithelial and myoepithelial cells. Immunoreactivity for both InvD1L and PDF (type II acini exclusively) revealed positive axons radiating along the acinar lumen. These axons were primarily enclosed by the adlumenal myoepithelial cell plasma membrane and interstitial projections of ablumenal epithelial cells. Our study has revealed the detailed ultrastructure of I. ricinus salivary glands, and provides a solid baseline for a comprehensive understanding of the cell-axon interactions and their functions in this essential tick organ.
Project description:BackgroundIxodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed.MethodsRNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV).ResultsDifferential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway.ConclusionsThis systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.
Project description:To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1' position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1' regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2'. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks.