An Ultra-Stretchable Sensitive Hydrogel Sensor for Human Motion and Pulse Monitoring.
Ontology highlight
ABSTRACT: Ionic hydrogels with intrinsic conductivity and stretchability show great potential in flexible electronics. However, it remains a great challenge to achieve hydrogels with mechanical stretchability, ionic conductivity, optical transparency, and a self-healing ability at the same time. In this paper, we developed a hydroxyethylidene diphosphonic acid (HEDP) assisted poly(vinyl alcohol) (PVA) composite hydrogel to achieve high-performance stretch-sensitive sensor. Through a facile freeze-thaw strategy, the hydrogel could achieve large stretchability (up to 950% strain), good conductivity (10.88 S/m), excellent linear sensitivity (GF = 2.72, within 100% strain), high transparency, and significant self-healing ability. The PVA-HEDP hydrogel-based strain sensor is capable of monitoring various human movements from small scale (e.g., laryngeal vibration while speaking) to large scale (e.g., knee joint movement). Moreover, the multisite sensor array is capable of detecting the subtle differences between the pulse wave features from Cun, Guan and Chi positions, mimicking the three-finger palpation in Traditional Chinese Medicine. This work demonstrates that the composite hydrogel-based flexible sensor provides a promising solution for multifunctional human activities and health monitoring.
Project description:Conductive hydrogels with high electrical conductivity, ductility, and anti-dryness have promising applications in flexible wearable electronics. However, its potential applications in such a developing field are severely hampered by its extremely poor adaptability to cold or hot environmental conditions. In this research, an "organic solvent/water" composite conductive hydrogel is developed by introducing a binary organic solvent of EG/H2O into the system using a simple one-pot free radical polymerization method to create Ti3C2TX MXene nanosheet-reinforced polyvinyl alcohol/polyacrylamide covalently networked nanocomposite hydrogels (PAEM) with excellent flexibility and mechanical properties. The optimized PAEM contains 0.3 wt% MXene has excellent mechanical performance (tensile elongation of ~1033%) and an improved modulus of elasticity (0.14 MPa), a stable temperature tolerance from -50 to 40 °C, and a high gauge factor of 10.95 with a long storage period and response time of 110 ms. Additionally, it is worth noting that the elongation at break at -40 °C was maintained at around 50% of room temperature. This research will contribute to the development of flexible sensors for human-computer interaction, electronic skin, and human health monitoring.
Project description:Stretchable and wearable strain sensors have been intensively studied in recent years for applications in human motion monitoring. However, achieving a high-performance strain sensor with high stretchability, ultra-sensitivity, and functionality, such as tunable sensing ranges and sensitivity to various stimuli, has not yet been reported, even though such sensors have great importance for the future applications of wearable electronics. Herein, a novel and versatile strain sensor based on a cracking (silver ink patterned silicone elastomer)-(silver plated nylon structure) (Ag-DS/CF) has been designed and fabricated. The unique structure combined precisely shaped stretchable conductive fabrics and wrinkled Ag-ink pattern to achieve an excellent electrical performance. The Ag-DS/CF could be used to detect both large and subtle human motions and activities, pressure changes, and physical vibrations by achieving high stretchability up to 75%, ultrahigh sensitivity (gauge factor >104-106), tunable sensing ranges (from 7 to 75%). Excellent durability was demonstrated for human motion monitoring with machine washability. The extremely versatile Ag-DS/CF showed outstanding potential for the future of wearable electronics in real-time monitoring of human health, sports performance, etc.
Project description:Wearable electronics, such as sensors, actuators, and supercapacitors, have attracted broad interest owing to their promising applications. Nevertheless, practical problems involving their sensitivity and stretchability remain as challenges. In this work, efforts were devoted to fabricating a highly stretchable and sensitive strain sensor based on dip-coating of graphene onto an electrospun thermoplastic polyurethane (TPU) nanofibrous membrane, followed by spinning of the TPU/graphene nanomembrane into an intertwined-coil configuration. Owing to the intertwined-coil configuration and the synergy of the two structures (nanoscale fiber gap and microscale twisting of the fiber gap), the conductive strain sensor showed a stretchability of 1100%. The self-inter-locking of the sensor prevents the coils from uncoiling. Thanks to the intertwined-coil configuration, most of the fibers were wrapped into the coils in the configuration, thus avoiding the falling off of graphene. This special configuration also endowed our strain sensor with an ability of recovery under a strain of 400%, which is higher than the stretching limit of knees and elbows in human motion. The strain sensor detected not only subtle movements (such as perceiving a pulse and identifying spoken words), but also large movements (such as recognizing the motion of fingers, wrists, knees, etc.), showing promising application potential to perform as flexible strain sensors.
Project description:Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand.
Project description:A human body monitoring system remains a significant focus, and to address the challenges in wearable sensors, a nanotechnology-enhanced strategy is proposed for designing stretchable metal-organic polymer nanocomposites. The nanocomposite comprises reduced graphene oxide (rGO) and in-situ generated silver nanoparticles (AgNPs) within elastic electrospun polystyrene-butadiene-polystyrene (SBS) fibers. The resulting Sandwich Structure Piezoresistive Woven Nanofabric (SSPWN) is a tactile-sensitive wearable sensor with remarkable performance. It exhibits a rapid response time (less than three milliseconds) and high reproducible stability over 5500 cycles. The nanocomposite also demonstrates exceptional thermal stability due to effective connections between rGO and AgNPs, making it suitable for wearable electronic applications. Furthermore, the SSPWN is successfully applied to human motion monitoring, including various areas of the hand and RGB sensing shoes for foot motion monitoring. This nanotechnology-enhanced strategy shows promising potential for intelligent healthcare, health monitoring, gait detection, and analysis, offering exciting prospects for future wearable electronic products.
Project description:Strain sensors based on conducting polymer hydrogels are considered highly promising candidates for wearable electronic devices. However, existing conducting polymer hydrogels are susceptible to aging, damage, and failure, which can greatly deteriorate the sensing performance of strain sensors based on these substances and the accuracy of data collection under large deformation. Developing conductive polymer hydrogels with concurrent high sensing performance and self-healing capability is a critical yet challenging task to improve the stability and lifetime of strain sensors. Herein, we design a self-healable conducting polymer hydrogel by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers and poly(vinyl alcohol) (PVA) via both physical and chemical crosslinking. This PEDOT:PSS-PVA nanocomposite hydrogel strain sensor displays an excellent strain monitoring range (>200%), low hysteresis (<1.6%), a high gauge factor (GF = 3.18), and outstanding self-healing efficiency (>83.5%). Electronic skins based on such hydrogel strain sensors can perform the accurate monitoring of various physiological signals, including swallowing, finger bending, and knee bending. This work presents a novel conducting polymer hydrogel strain sensor demonstrating both high sensing performance and self-healability, which can satisfy broad application scenarios, such as wearable electronics, health monitoring, etc.
Project description:Our groups have previously developed a biochemical gas sensor to measure isopropanol (IPA) in exhaled air and have applied it for breath IPA investigation in healthy subjects and diabetes patients. In this study, the original bio-sniffer was modified with a series of components that improved the limit of detection (LOD). First, the modified IPA bio-sniffer used a C8855-type photomultiplier tube (PMT) that performed well in the photon sensitivity at the peak wavelength of nicotinamide adenine dinucleotide (NADH) fluorescence. Second, the multi-core bifurcated optical fiber, which incorporated 36 fibers to replace the previous dual-core type, enhanced the fluorescence collection. Third, the optical fiber probe was reinforced for greater width, and the flow-cell was redesigned to increase the area of the enzyme-immobilized membrane in contact with the air sample. These modifications lowered the detection limit to 0.5 ppb, a significant increase over the previous 1.0 ppb. Moreover, the modified bio-sniffer successfully analyzed the IPA concentration in exhaled air from a volunteer, which confirmed its capability for real-world sample detection. The modified bio-sniffer is more applicable to breath measurement and the detection of other extremely-low-concentration samples.
Project description:The conductivity and sensing stability of yarn-based strain sensors are still challenges when it comes to practical applications. To address these challenges, surface engineering of polyurethane (PU) yarn was introduced to improve its surface hydrophilicity for better deposition of MXene nanosheets in its dispersion. The introduction of Ag nanoparticles via magnetron sputtering greatly improved the surface conductivity; meanwhile, the encapsulation of the PDMS protective layer effectively enhanced the sensing stability over 15,000 cycling process, as well as the working range with a gauge factor value over 700 under a strain range of 150-300%. Moreover, the exploration of its applications in human motion monitoring indicate that the prepared strain-sensing yarn shows great potential in detecting both tiny motions or large-scale movements of the human body, which will be suitable for further development into multifunctional smart wearable sensors or metaverse applications in the future.
Project description:Cutting-edge technologies of stretchable, skin-mountable, and wearable electronics have attracted tremendous attention recently due to their very wide applications and promising performances. One direction of particular interest is to investigate novel properties in stretchable electronics by exploring multifunctional materials. Here, we report an integrated strain sensing system that is highly stretchable, rehealable, fully recyclable, and reconfigurable. This system consists of dynamic covalent thermoset polyimine as the moldable substrate and encapsulation, eutectic liquid metal alloy as the strain sensing unit and interconnects, and off-the-shelf chip components for measuring and magnifying functions. The device can be attached on different parts of the human body for accurately monitoring joint motion and respiration. Such a strain sensing system provides a reliable, economical, and ecofriendly solution to wearable technologies, with wide applications in health care, prosthetics, robotics, and biomedical devices.
Project description:Flexible strain sensors are promising candidates for intelligent wearable devices. Among previous studies, although crack-based sensors have attracted a lot of attention due to their ultrahigh sensitivity, large strain usually causes fractures in the conductive paths. Because of the unstable crack structure, the tradeoff between sensitivity and workable strain range is still a challenge. As carbon nanotubes (CNTs) and silver nanowires (AgNWs) can form a strong interface with the thermoplastic substrate and strengthen the conductive network by capillary force during water evaporation, CNTs and AgNWs were deposited on electrospun TPU fiber mats via vacuum-assisted filtration in this work. The prestretching treatment constructed a microcrack structure that endowed the sensor with the combined characteristics of a wide working range (0~171% strain), ultrahigh sensitivity (a gauge factor of 691 within 0~102% strain, ~2 × 104 within 102~135% strain, and >11 × 104 within 135~171% strain), a fast response time (~65 ms), small hysteresis, and superior durability (>2000 cycles). Subsequently, the sensing mechanism of the sensor was studied. Distributed microcrack propagation based on the "island-bridge" structure was explained in detail, and its influence on the strain-sensing behavior of the sensor was analyzed. Finally, the sensor was assembled to monitor various vibration signals and human motions, demonstrating its potential applications in the fields of electronic skin and human health monitoring.