Unknown

Dataset Information

0

GSI Treatment Preserves Protein Synthesis in C2C12 Myotubes.


ABSTRACT: It has been demonstrated that inhibiting Notch signaling through γ-secretase inhibitor (GSI) treatment increases myogenesis, AKT/mTOR signaling, and muscle protein synthesis (MPS) in C2C12 myotubes. The purpose of this study was to determine if GSI-mediated effects on myogenesis and MPS are dependent on AKT/mTOR signaling. C2C12 cells were assessed for indices of myotube formation, anabolic signaling, and MPS following GSI treatment in combination with rapamycin and API-1, inhibitors of mTOR and AKT, respectively. GSI treatment increased several indices of myotube fusion and MPS in C2C12 myotubes. GSI-mediated effects on myotube formation and fusion were completely negated by treatment with rapamycin and API-1. Meanwhile, GSI treatment was able to rescue MPS in C2C12 myotubes exposed to rapamycin or rapamycin combined with API-1. Examination of protein expression revealed that GSI treatment was able to rescue pGSK3β Ser9 despite AKT inhibition by API-1. These findings demonstrate that GSI treatment is able to rescue MPS independent of AKT/mTOR signaling, possibly via GSK3β modulation.

SUBMITTER: Huot JR 

PROVIDER: S-EPMC8307118 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7345243 | biostudies-literature
| S-EPMC3219047 | biostudies-literature
| S-EPMC6190860 | biostudies-literature
| S-EPMC6316211 | biostudies-literature
| S-EPMC4864198 | biostudies-literature
| S-EPMC8681867 | biostudies-literature
| S-EPMC3581417 | biostudies-literature
| S-EPMC7165150 | biostudies-literature
| S-EPMC9106851 | biostudies-literature
| S-EPMC4650824 | biostudies-other