Unknown

Dataset Information

0

A QM/MM Study on the Initiation Reaction of Firefly Bioluminescence-Enzymatic Oxidation of Luciferin.


ABSTRACT: Among all bioluminescent organisms, the firefly is the most famous, with a high luminescent efficiency of 41%, which is widely used in the fields of biotechnology, biomedicine and so on. The entire bioluminescence (BL) process involves a series of complicated in-vivo chemical reactions. The BL is initiated by the enzymatic oxidation of luciferin (LH2). However, the mechanism of the efficient spin-forbidden oxygenation is far from being totally understood. Via MD simulation and QM/MM calculations, this article describes the complete process of oxygenation in real protein. The oxygenation of luciferin is initiated by a single electron transfer from the trivalent anionic LH2 (L3-) to O2 to form 1[L•2-…O2•-]; the entire reaction is carried out along the ground-state potential energy surface to produce the dioxetanone (FDO-) via three transition states and two intermediates. The low energy barriers of the oxygenation reaction and biradical annihilation involved in the reaction explain this spin-forbidden reaction with high efficiency. This study is helpful for understanding the BL initiation of fireflies and the other oxygen-dependent bioluminescent organisms.

SUBMITTER: Yu M 

PROVIDER: S-EPMC8307557 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3494413 | biostudies-literature
| S-EPMC4157642 | biostudies-literature
| S-EPMC8576761 | biostudies-literature
| S-EPMC5856855 | biostudies-literature
| S-EPMC4501308 | biostudies-literature
| S-EPMC5380004 | biostudies-literature
| S-EPMC4183640 | biostudies-literature
| S-EPMC5816104 | biostudies-literature
| S-EPMC5818473 | biostudies-literature
| S-EPMC8048875 | biostudies-literature