Unknown

Dataset Information

0

Tracking structural evolution: operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction.


ABSTRACT: Unveiling the structural evolution and working mechanism of catalysts under realistic operating conditions is crucial for the design of efficient electrocatalysts for CO2 electroreduction, yet remains highly challenging. Here, by virtue of operando structural measurements at multiscale levels, it is identified under CO2 electroreduction conditions that an as-prepared CeO2/BiOCl precatalyst gradually evolves into CeOx/Bi interface structure with enriched Ce3+ species, which serves as the real catalytically active phase. The derived CeOx/Bi interface structure compared to pure Bi counterpart delivers substantially enhanced performance with a formate Faradaic efficiency approaching 90% for 24 hours in a wide potential window. The formate Faradaic efficiency can be further increased by using isotope D2O instead of H2O. Density functional theory calculations suggest that the regenerative CeOx/Bi interfacial sites can not only promote water activation to increase local *H species for CO2 protonation appropriately, but also stabilize the key intermediate *OCHO in formate pathway.

SUBMITTER: Pang R 

PROVIDER: S-EPMC8310765 | biostudies-literature | 2021 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tracking structural evolution: <i>operando</i> regenerative CeO<sub>x</sub>/Bi interface structure for high-performance CO<sub>2</sub> electroreduction.

Pang Ruichao R   Tian Pengfei P   Jiang Hongliang H   Zhu Minghui M   Su Xiaozhi X   Wang Yu Y   Yang Xiaoling X   Zhu Yihua Y   Song Li L   Li Chunzhong C  

National science review 20200824 7


Unveiling the structural evolution and working mechanism of catalysts under realistic operating conditions is crucial for the design of efficient electrocatalysts for CO<sub>2</sub> electroreduction, yet remains highly challenging. Here, by virtue of <i>operando</i> structural measurements at multiscale levels, it is identified under CO<sub>2</sub> electroreduction conditions that an as-prepared CeO<sub>2</sub>/BiOCl precatalyst gradually evolves into CeO<sub>x</sub>/Bi interface structure with  ...[more]

Similar Datasets

| S-EPMC9072316 | biostudies-literature
| S-EPMC8132937 | biostudies-literature
| S-EPMC10018795 | biostudies-literature
| S-EPMC8016180 | biostudies-literature
| S-EPMC9596843 | biostudies-literature
| S-EPMC8048979 | biostudies-literature
| S-EPMC7590092 | biostudies-literature
| S-EPMC10416299 | biostudies-literature
| S-EPMC9325467 | biostudies-literature
| S-EPMC9426795 | biostudies-literature