Project description:BackgroundTranscatheter mitral valve replacement (TMVR) may be a valuable treatment option for mitral annular calcification and severe mitral stenosis (MS) in patients at high operative risk. Pre-procedural virtual and printed simulations may aid in procedure planning, device sizing, and mitigate complications such as valve embolization or left ventricular outflow tract (LVOT) obstruction.Case summaryWe describe a case of TMVR in which multi-detector computed tomography (MDCT) derived, three-dimensional virtual planning and a 3D-printed model of the patients' left heart provided enhanced understanding of an individual patient's unique anatomy to determine feasibility, device sizing, and risk stratification. This resulted in deployment of an adequately sized valve. Post-TMVR LVOT obstruction was treated with LVOT balloon dilatation and percutaneous transluminal septal myocardial ablation.DiscussionAdvanced MDCT-derived planning techniques introduce consistent 3D modeling and printing to enhance understanding of intracardiac anatomical relationships and test device implantation. Still, static measurements do not feature haemodynamic factors, tissue, or device characteristics and do not predict device host interaction. Transcatheter mitral valve replacement is feasible in MS when adequately pre-procedurally planned. Multi-detector computed tomography-derived, 3D, virtual and printed models contribute to adequate planning in terms of determining patient eligibility, procedure feasibility, and device sizing. However, static 3D modeling cannot completely eliminate the risk of peri-procedural complications.
Project description:Over the last decades, bioprosthetic heart valves (BHV) have been increasingly implanted instead of mechanical valves in patients undergoing surgical aortic valve replacement (SAVR). Structural valve deterioration (SVD) is a common issue at follow-up and can justify the need for a reintervention. In the evolving landscape of interventional cardiology, valve-in-valve transcatheter aortic valve replacement (ViV TAVR) has emerged as a remarkable innovation to address the complex challenges of patients previously treated with SAVR and has rapidly gained prominence as a feasible technique especially in patients at high surgical risk. On the other hand, the expanding indications for TAVR in progressively younger patients with severe aortic stenosis pose the crucial question on the long-term durability of transcatheter heart valves (THVs), as patients might outlive the bioprosthetic valve. In this review, we provide an overview on the role of ViV TAVR for failed surgical and transcatheter BHVs, with a specific focus on current clinical evidence, pre-procedural planning, procedural techniques, and possible complications. The combination of integrated Heart Team discussion with interventional growth curve makes it possible to achieve best ViV TAVR results and avoid complications or put oneself ahead of time from them.
Project description:Magnetic resonance imaging is increasingly being used to evaluate the lymphatic system. Advances in magnetic resonance (MR) software and hardware allow improved visualization of lymph nodes and lymphatic vessels. We describe how MR lymphangiography can be used to diagnose central lymphatic system anatomy and pathology, which can be used for diagnostic purposes or for pre-procedural planning.
Project description:Advances in our knowledge of cardiovascular disorders coupled with technological innovations have enabled the increased use of minimally invasive cardiovascular surgeries and transcatheter interventions, with resultant reduced morbidity and hospital stay. Three-dimensional imaging, particularly computed tomography (CT) is increasingly used for patient selection, providing a roadmap of the anatomy and identifying factors that may complicate these procedures. Advantages of CT are the rapid turnaround time, good spatial and temporal resolutions, wide field of view and three-dimensional multi-planar reconstruction capabilities. This pictorial review describes the role of CT in the pre-operative evaluation of patients undergoing cardiovascular surgeries and intervention. Main Messages • CT scan is valuable in pre-operative evaluation for cardiac surgeries • Cardiovascular structures, including bypass grafts should be located >10 mm from the sternum in patients for reoperative cardiothoracic surgeries • Knowledge of variations in pulmonary venous anatomy are essential for planning radiofrequency ablation.
Project description:Three-dimensional printing is a valuable modality with broad clinical applications. Hip preservation surgery outcomes are dependent on correction of morphological abnormalities that may be optimally visualized with three-dimensional models. To assess the efficacy of three-dimensional models for patient and trainee education and to determine its benefits during pre-operative planning in hip preservation surgery. Sixteen patients with hip pathology were selected. Computed tomography was utilized to generate three-dimensional models. Customized Likert-style questionnaires were given to 10 hip preservation surgeons, 11 orthopedic surgery residents and 10 patients. All residents strongly agreed or agreed that the three-dimensional hip models helped them to understand patients' pathology. All but one patient agreed that the models assisted in their understanding of the treatment plan. Surgeons concurred that although they do not routinely order three-dimensional models, their use would improve trainee and patient education, especially when treating atypical osseous pathomorphologies. Three-dimensional models are tools that can help surgeon, trainee and patient understanding and participation in treatment of complex hip disorders. Patients and trainees agree that the prototypes enhanced their educational experience, as the surgeon can directly demonstrate complex morphological abnormalities. Trainees can therefore gain a better understanding of hip pathologies and treatment. As patients better understand their hip disorder, they can more fully participate in shared treatment decision-making.Level of evidenceLevel IV, Retrospective Case Series.
Project description:3D printing can produce intuitive, precise, and personalized anatomical models, providing invaluable support for precision medicine, particularly in areas like surgical training and preoperative planning. However, conventional 3D printed models are often significantly more rigid than human organs and cannot undergo repetitive resection, which severely restricts their clinical value. Here we report the stereolithographic 3D printing of personalized liver models based on physically crosslinked self-healing elastomers with liver-like softness. Benefiting from the short printing time, the highly individualized models can be fabricated immediately following enhanced CT examination. Leveraging the high-efficiency self-healing performance, these models support repetitive resection for optimal trace through a trial-and-error approach. At the preliminary explorative clinical trial (NCT06006338), a total of 5 participants are included for preoperative planning. The primary outcomes indicate that the negative surgery margins are achieved and the unforeseen injuries of vital vascular structures are avoided. The 3D printing of liver models can enhance the safety of hepatic surgery, demonstrating promising application value in clinical practice.
Project description:PURPOSE:The technology of 3D printing (3DP) exists for quite some time, but it is still not utilized to its full potential in the field of orthopaedics and traumatology, such as underestimating its worth in virtual preoperative planning (VPP) and designing various models, templates, and jigs. It can be a significant tool in the reduction of surgical morbidity and better surgical outcome avoiding various associated complications. METHODS:An observational study was done including 91 cases of complex trauma presented in our institution requiring operative fixation. Virtual preoperative planning and 3DP were used in the management of these fractures. Surgeons managing these cases were given a set of questionnaire and responses were recorded and assessed as a quantitative data. RESULTS:In all the 91 cases, where VPP and 3DP were used, the surgeons were satisfied with the outcome which they got intraoperatively and postoperatively. Surgical time was reduced, with a better outcome. Three dimensional models of complex fracture were helpful in understanding the anatomy and sketching out the plans for optimum reduction and fixation. The average score of the questionnaire was 4.5, out of a maximum of 6, suggesting a positive role of 3DP in orthopaedics. CONCLUSION:3DP is useful in complex trauma management by accurate reduction and placement of implants, reduction of surgical time and with a better outcome. Although there is an initial learning curve to understand and execute the VPP and 3DP, these become easier with practice and experience.
Project description:Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success.
Project description:With the advent of three-dimensional printing, rapid growth in the field and application in spinal and orthopedic surgery has been seen. This technology is now being applied in creating patient-specific implants, as it offers benefits over the generic alternative, with growing literature supporting this. This report details a unique application of virtual surgical planning and manufacture of a personalized implant in a case of cervical disc replacement failure with severe osteolysis and resultant hypermobility. Where this degree of degenerative bone loss would often necessitate a vertebrectomy to be performed, this case highlights the considerable customizability of 3D-printed patient-specific implants to contour to the bony defects, allowing for a smaller and safer operation, with the achievement of stability as early as 3 months after the procedure, by the presence of osseointegration. With increasing developments in virtual planning technology and 3D printing ability, the future of complex spinal revision surgery may adopt these technologies as it affords the patient a faster, safer, and less invasive and destructive procedure.
Project description:With growth of confectionery industry, there is a great demand for candy shape, and 3D printing technology is way to achieve it. The printing properties of gummy, which is formed of gelatin and low acyl gellan as gel, maltol, erythritol, sorbitol, and xylitol as sweeteners, were tested in this study. Gummies' rheological properties, 3D printing properties, and textural qualities were measured using a rheometer, FTIR, and SEM in this study. The strength of the hydrogen bonds will be affected by the addition of polyol, after which the excluded volume effect of polyol and viscosity will become the most important aspect. Polyols increased the gelation temperature (Tgelation), improved the gel network, and improved hydrogen bonding in the gel, according to the findings. Yield stress, shear recovery performance, and gel strength were initially increased, then decreased, when polyol concentration was increased. It had a 40.59 °C gelation temperature, an 82.99% recovery rate, noticeable shear thinning features, high self-supporting performance, and textural qualities when ink with 35 g maltitol and 30 g erythritol gave the best printing performance. This research serves as a foundation for the development of individualized, bespoke 3D printed gummies in the future.