Project description:IntroductionThis systematic review aimed to retrieve patients diagnosed with de novo immune thrombocytopenic purpura (ITP) after COVID-19 immunization to determine their epidemiological characteristics, clinical course, therapeutic strategies, and outcome.Materials and methodsWe conducted the review using four major databases, comprising PubMed, Scopus, Web of Science, and the Cochrane library, until April 2022. A systematic search was performed in duplicate to access eligible articles in English. Furthermore, a manual search was applied to the chosen papers' references to enhance the search sensitivity. Data were extracted and analyzed with the SPSS 20.1 software.ResultsA total of 77 patients with de novo COVID-19 vaccine-associated ITP were identified from 41 studies, including 31 case reports and 10 case series. The median age of patients who developed COVID-19 vaccine-associated ITP was 54 years (IQR 36-72 years). The mRNA-based COVID-19 vaccines, including BNT16B2b2 and mRNA-1273, were most implicated (75.4%). Those were followed by the adenovirus vector-based vaccines, inclusive of ChAdOx1 nCoV-19 and vAd26.COV2.S. No report was found relating ITP to other COVID-19 vaccines. Most cases (79.2%) developed ITP after the first dose of COVID-19 vaccination. 75% of the patients developed ITP within 12 days of vaccination, indicating a shorter lag time compared to ITP after routine childhood vaccinations. Sixty-seven patients (87%) patients were hospitalized. The management pattern was similar to primary ITP, and systemic glucocorticoids, IVIg, or both were the basis of the treatment in most patients. Most patients achieved therapeutic goals; only two individuals required a secondary admission, and one patient who presented with intracranial hemorrhage died of the complication.ConclusionsDe novo ITP is a rare complication of COVID-19 vaccination, and corresponding reports belong to mRNA-based and adenovirus vector-based vaccines, in order of frequency. This frequency pattern may be related to the scale of administration of individual vaccines and their potency in inducing autoimmunity. The more the COVID-19 vaccine is potent to induce antigenic challenge, the shorter the lag time would be. Most patients had a benign course and responded to typical treatments of primary ITP.
Project description:Background/purposeEfficacy and safety data of heterologous prime-boost vaccination against SARS-CoV-2 remains limited.MethodsWe recruited adult volunteers for homologous or heterologous prime-boost vaccinations with adenoviral (ChAdOx1, AstraZeneca) and/or mRNA (mRNA-1273, Moderna) vaccines. Four groups of prime-boost vaccination schedules were designed: Group 1, ChAdOx1/ChAdOx1 8 weeks apart; Group 2, ChAdOx1/mRNA-1273 8 weeks apart; Group 3, ChAdOx1/mRNA-1273 4 weeks apart; and Group 4, mRNA-1273/mRNA-1273 4 weeks apart. The primary outcome was serum anti-SARS-CoV-2 IgG titers and neutralizing antibody titers against B.1.1.7 (alpha) and B.1.617.2 (delta) variants on day 28 after the second dose. Adverse events were recorded up until 84 days after the second dose.ResultsWe enrolled 399 participants with a median age of 41 years and 75% were female. On day 28 after the second dose, the anti-SARS-CoV-2 IgG titers of both heterologous vaccinations (Group 2 and Group 3) were significantly higher than that of homologous ChAdOx1 vaccination (Group 1), and comparable with homologous mRNA-1273 vaccination (Group 4). The heterologous vaccination group had better neutralizing antibody responses against the alpha and delta variant as compared to the homologous ChAdOx1 group. Most of the adverse events (AEs) were mild and transient. AEs were less frequent when heterologous boosting was done at 8 weeks rather than at 4 weeks.ConclusionHeterologous ChAdOx1/mRNA-1273 vaccination provided higher immunogenicity than homologous ChAdOx1 vaccination and comparable immunogenicity with the homologous mRNA-1273 vaccination. Our results support the safety and efficacy of heterologous prime-boost vaccination using the ChAdOx1 and mRNA-1273 COVID-19 vaccines. (ClinicalTrials.gov number, NCT05074368).
Project description:SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.
Project description:Following the outbreak of the COVID-19 pandemic, millions of people around the world have been affected with SARS-CoV-2 infection. In addition to the typical symptoms, thrombotic events, lymphopenia, and thrombocytopenia have been reported in COVID-19 patients. Immune thrombocytopenic purpura (ITP) is one of the thrombotic events that occur in some COVID-19 patients. Hyperinflammation, cytokine storms, and immune dysregulation in some patients are the cause to the main COVID-19 complications such as ALI (acute lung injury), acute respiratory distress syndrome (ARDS), and multiple organ failure. Disruption in the differentiation of T-cells, enhanced differentiation of Th17 and Th1, cell death (pyroptosis), hyper-inflammation and dysfunction of inflammatory neutrophils and macrophages, and hyperactivity of NLRP3-inflammasome are among the important factors that may be the cause to COVID-19-induced ITP. This study aimed to give an overview of the findings on the immunopathogenesis of ITP and COVID-19-induced ITP. Further studies are required to better understand the exact immunopathogenesis and effective treatments for ITP, especially in inflammatory disorders.
Project description:Vaccine-induced thrombotic thrombocytopenia with cerebral venous thrombosis is a syndrome recently described in young adults within two weeks from the first dose of the ChAdOx1 nCoV-19 vaccine. Here we report two cases of malignant middle cerebral artery (MCA) infarct and thrombocytopenia 9-10 days following ChAdOx1 nCoV-19 vaccination. The two cases arrived in our facility around the same time but from different geographical areas, potentially excluding epidemiological links; meanwhile, no abnormality was found in the respective vaccine batches. Patient 1 was a 57-year-old woman who underwent decompressive craniectomy despite two prior, successful mechanical thrombectomies. Patient 2 was a 55-year-old woman who developed a fatal bilateral malignant MCA infarct. Both patients manifested pulmonary and portal vein thrombosis and high level of antibodies to platelet factor 4-polyanion complexes. None of the patients had ever received heparin in the past before stroke onset. Our observations of rare arterial thrombosis may contribute to assessment of possible adverse effects associated with COVID-19 vaccination.
Project description:Background there are very few reports of COVID-19 vaccine related multiple sclerosis (MS) relapses. Here we report our first case of ChAdOx1 nCoV-19 Corona virus vaccine related MS relapse. Case presentation a 24- year- old lady doctor, who had taken ChAdOx1 nCoV-19 Corona virus vaccine got a relapse after seven days of the last dose (second) of the vaccine. Relapse was in the form of paresthesias involving her left upper and lower limbs and Lhermitte's phenomena. She responded fairly well to a short course of steroids. Conclusions this case highlights the importance of counselling MS patients regarding the potential for relapse pre-vaccination and closely monitoring MS patients who are administered the ChAdOx1 nCoV-19 Corona Virus vaccine for any relapse.
Project description:BackgroundThe safety and efficacy of the AZD1222 (ChAdOx1 nCoV-19) vaccine in a large, diverse population at increased risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United States, Chile, and Peru has not been known.MethodsIn this ongoing, double-blind, randomized, placebo-controlled, phase 3 clinical trial, we investigated the safety, vaccine efficacy, and immunogenicity of two doses of AZD1222 as compared with placebo in preventing the onset of symptomatic and severe coronavirus disease 2019 (Covid-19) 15 days or more after the second dose in adults, including older adults, in the United States, Chile, and Peru.ResultsA total of 32,451 participants underwent randomization, in a 2:1 ratio, to receive AZD1222 (21,635 participants) or placebo (10,816 participants). AZD1222 was safe, with low incidences of serious and medically attended adverse events and adverse events of special interest; the incidences were similar to those observed in the placebo group. Solicited local and systemic reactions were generally mild or moderate in both groups. Overall estimated vaccine efficacy was 74.0% (95% confidence interval [CI], 65.3 to 80.5; P<0.001) and estimated vaccine efficacy was 83.5% (95% CI, 54.2 to 94.1) in participants 65 years of age or older. High vaccine efficacy was consistent across a range of demographic subgroups. In the fully vaccinated analysis subgroup, no severe or critical symptomatic Covid-19 cases were observed among the 17,662 participants in the AZD1222 group; 8 cases were noted among the 8550 participants in the placebo group (<0.1%). The estimated vaccine efficacy for preventing SARS-CoV-2 infection (nucleocapsid antibody seroconversion) was 64.3% (95% CI, 56.1 to 71.0; P<0.001). SARS-CoV-2 spike protein binding and neutralizing antibodies increased after the first dose and increased further when measured 28 days after the second dose.ConclusionsAZD1222 was safe and efficacious in preventing symptomatic and severe Covid-19 across diverse populations that included older adults. (Funded by AstraZeneca and others; ClinicalTrials.gov number, NCT04516746.).