Project description:The sudden loss of smell is among the earliest and most prevalent symptoms of COVID-19 when measured with a clinical psychophysical test. Research has shown the potential impact of frequent screening for olfactory dysfunction, but existing tests are expensive and time consuming. We developed a low-cost ($0.50/test) rapid psychophysical olfactory test (KOR) for frequent testing and a model-based COVID-19 screening framework using a Bayes Network symptoms model. We trained and validated the model on two samples: suspected COVID-19 cases in five healthcare centers (n = 926; 33% prevalence, 309 RT-PCR confirmed) and healthy miners (n = 1,365; 1.1% prevalence, 15 RT-PCR confirmed). The model predicted COVID-19 status with 76% and 96% accuracy in the healthcare and miners samples, respectively (healthcare: AUC = 0.79 [0.75-0.82], sensitivity: 59%, specificity: 87%; miners: AUC = 0.71 [0.63-0.79], sensitivity: 40%, specificity: 97%, at 0.50 infection probability threshold). Our results highlight the potential for low-cost, frequent, accessible, routine COVID-19 testing to support society's reopening.
Project description:Although seasonal variation has a known influence on the transmission of several respiratory viral infections, its role in SARS-CoV-2 transmission remains unclear. While there is a sizable and growing literature on environmental drivers of COVID-19 transmission, recent reviews have highlighted conflicting and inconclusive findings. This indeterminacy partly owes to the fact that seasonal variation relates to viral transmission by a complicated web of causal pathways, including many interacting biological and behavioural factors. Since analyses of specific factors cannot determine the aggregate strength of seasonal forcing, we sidestep the challenge of disentangling various possible causal paths in favor of a holistic approach. We model seasonality as a sinusoidal variation in transmission and infer a single Bayesian estimate of the overall seasonal effect. By extending two state-of-the-art models of non-pharmaceutical intervention (NPI) effects and their datasets covering 143 regions in temperate Europe, we are able to adjust our estimates for the role of both NPIs and mobility patterns in reducing transmission. We find strong seasonal patterns, consistent with a reduction in the time-varying reproduction number R(t) (the expected number of new infections generated by an infectious individual at time t) of 42.1% (95% CI: 24.7%-53.4%) from the peak of winter to the peak of summer. These results imply that the seasonality of SARS-CoV-2 transmission is comparable in magnitude to the most effective individual NPIs but less than the combined effect of multiple interventions.
Project description:BackgroundWhen tackling complex public health challenges such as childhood obesity, interventions focused on immediate causes, such as poor diet and physical inactivity, have had limited success, largely because upstream root causes remain unresolved. A priority is to develop new modelling frameworks to infer the causal structure of complex chronic disease networks, allowing disease "on-ramps" to be identified and targeted.MethodsThe system surrounding childhood obesity was modelled as a Bayesian network, using data from The Longitudinal Study of Australian Children. The existence and directions of the dependencies between factors represent possible causal pathways for childhood obesity and were encoded in directed acyclic graphs (DAGs). The posterior distribution of the DAGs was estimated using the Partition Markov chain Monte Carlo.ResultsWe have implemented structure learning for each dataset at a single time point. For each wave and cohort, socio-economic status was central to the DAGs, implying that socio-economic status drives the system regarding childhood obesity. Furthermore, the causal pathway socio-economic status and/or parental high school levels → parental body mass index (BMI) → child's BMI existed in over 99.99% of posterior DAG samples across all waves and cohorts. For children under the age of 8 years, the most influential proximate causal factors explaining child BMI were birth weight and parents' BMI. After age 8 years, free time activity became an important driver of obesity, while the upstream factors influencing free time activity for boys compared with girls were different.ConclusionsChildhood obesity is largely a function of socio-economic status, which is manifest through numerous downstream factors. Parental high school levels entangle with socio-economic status, and hence, are on-ramp to childhood obesity. The strong and independent causal relationship between birth weight and childhood BMI suggests a biological link. Our study implies that interventions that improve the socio-economic status, including through increasing high school completion rates, may be effective in reducing childhood obesity prevalence.
Project description:Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and -validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as 'NanoSpot.ai', is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.
Project description:Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.
Project description:Genus Aspergillus represents a widely spread genus of fungi that is highly popular for possessing potent medicinal potential comprising mainly antimicrobial, cytotoxic and antioxidant properties. They are highly attributed to its richness by alkaloids, terpenes, steroids and polyketons. This review aimed to comprehensively explore the diverse alkaloids isolated and identified from different species of genus Aspergillus that were found to be associated with different marine organisms regarding their chemistry and biology. Around 174 alkaloid metabolites were reported, 66 of which showed important biological activities with respect to the tested biological activities mainly comprising antiviral, antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities. Besides, in silico studies on different microbial proteins comprising DNA-gyrase, topoisomerase IV, dihydrofolate reductase, transcriptional regulator TcaR (protein), and aminoglycoside nucleotidyl transferase were done for sixteen alkaloids that showed anti-infective potential for better mechanistic interpretation of their probable mode of action. The inhibitory potential of compounds vs. Angiotensin-Converting Enzyme 2 (ACE2) as an important therapeutic target combating COVID-19 infection and its complication was also examined using molecular docking. Fumigatoside E showed the best fitting within the active sites of all the examined proteins. Thus, Aspergillus species isolated from marine organisms could afford bioactive entities combating infectious diseases.
Project description:Despite the fact that preconditions of political participation were thoroughly examined before, there is still not enough understanding of which factors directly affect political participation and which factors correlate with participation due to common background variables. This article scrutinises the causal relations between the variables associated with participation in online activism and introduces a three-step approach in learning a reliable structure of the participation preconditions' network to predict political participation. Using Bayesian network analysis and structural equation modeling to stabilise the structure of the causal relations, the analysis showed that only age, political interest, internal political efficacy and no other factors, highlighted by the previous political participation research, have direct effects on participation in online activism. Moreover, the direct effect of political interest is mediated by the indirect effects of internal political efficacy and age via political interest. After fitting the parameters of the Bayesian network dependent on the received structure, it became evident that given prior knowledge of the explanatory factors that proved to be most important in terms of direct effects, the predictive performance of the model increases significantly. Despite this fact, there is still uncertainty when it comes to predicting online participation. This result suggests that there remains a lot to be done in participation research when it comes to identifying and distinguishing factors that stimulate new types of political activities.
Project description:Functional networks, i.e. networks representing the interactions between the elements of a complex system and reconstructed from the observed elements' dynamics, are becoming a fundamental tool to unravel the structures created by the movement of information in systems like the human brain. They also present drawbacks, one of the most important being the inherent difficulty in representing and interpreting the resulting structures for large number of nodes and links. I here propose a causality clustering approach, based on grouping nodes into clusters according to their similarity in the overall information dynamics, the latter one being measured by a causality metric. The whole system can then arbitrarily be simplified, with nodes being grouped in e.g. sources, brokers and sinks of information. The advantages and limitations of the proposed approach are discussed using a set of synthetic and real-world data sets, the latter ones representing two neuroscience and technological problems.
Project description:COVID-19 caused by SARS-CoV-2 have become a global pandemic with serious rate of fatalities. SARS-CoV and MERS-CoV have also caused serious outbreak previously but the intensity was much lower than the ongoing SARS-CoV-2. The main infectivity factor of all the three viruses is the spike glycoprotein. In this study we have examined the intrinsic dynamics of the prefusion, lying state of trimeric S protein of these viruses through Normal Mode Analysis using Anisotropic Network Model. The dynamic modes of the S proteins of the aforementioned viruses were compared by root mean square inner product (RMSIP), spectral overlap and cosine correlation matrix. S proteins show homogenous correlated or anticorrelated motions among their domains but direction of Cα atom among the spike proteins show less similarity. SARS-CoV-2 spike shows high vertically upward motion of the receptor binding motif implying its propensity for binding with the receptor even in the lying state. MERS-CoV spike shows unique dynamical motion compared to the other two S protein indicated by low RMSIP, spectral overlap and cosine correlation value. This study will guide in developing common potential inhibitor molecules against closed state of spike protein of these viruses to prevent conformational switching from lying to standing state.