Project description:AimsWhether and how iron deficiency (ID) impacts patients with heart failure (HF) with preserved ejection fraction (HFpEF) remain unclear. The aim of our study was to investigate the impact of ID on functional status, exercise capacity, and prognosis in HFpEF.Methods and resultsThe study population consisted of 300 HFpEF patients. ID was defined as serum ferritin <100 μg/L or 100-300 μg/L and transferrin-saturation <20%. Baseline functional status, quality of life (HADS score and EQ 5D index), 6 min walking test, echocardiography, and outcome (all-cause mortality and combined all cause-mortality and HF hospitalization) were evaluated. ID was found in 159 (53%) patients. Patients with ID had a worse prognosis with a higher combined endpoint of all-cause mortality and HF hospitalization after 4 years of follow-up (log rank = 0.008). Pulmonary hypertension, depression, and thyroid disease were more prevalent in the ID group. Multivariable analysis showed that ID was independently associated with body mass index (P = 0.003), pulmonary hypertension (P = 0.008), and thyroid disease (P = 0.01). Although patients with ID had a lower exercise capacity compared with patients without ID (393 m [294-455] vs. 344 m [260-441], P = 0.008), there was no significant correlation after multivariable correction for age, BMI, NT-proBNP, DM, and depression.ConclusionsHeart failure with preserved ejection fraction patients with ID have a worse prognosis and impaired exercise capacity compared with those without ID. However, although a trend was observed, after multivariable correction ID was no longer significantly associated with a reduced exercise capacity. This reflects that impaired exercise capacity in HFpEF is complex and seems multifactorial. Interestingly, pulmonary hypertension was an independent predictor of both ID and exercise capacity.
Project description:Heart failure with preserved ejection fraction (HFpEF) represents a heterogeneous collection of conditions that are unified by the presence of a left ventricular ejection fraction ?50%, evidence of impaired diastolic function and elevated natriuretic peptide levels, all within the context of typical heart failure signs and symptoms. However, while HFpEF is steadily becoming the predominant form of heart failure, disease-modifying treatment options for this population remain sparse. This review provides an overview of the diagnosis, management and prevention of HFpEF for general physicians.
Project description:AimsPCSK9 is secreted into the circulation, mainly by the liver, and interacts with low-density lipoprotein receptor (LDLR) homologous and non-homologous receptors, including CD36, thus favouring their intracellular degradation. As PCSK9 deficiency increases the expression of lipids and lipoprotein receptors, thus contributing to cellular lipid accumulation, we investigated whether this could affect heart metabolism and function.Methods and resultsWild-type (WT), Pcsk9 KO, Liver conditional Pcsk9 KO and Pcsk9/Ldlr double KO male mice were fed for 20 weeks with a standard fat diet and then exercise resistance, muscle strength, and heart characteristics were evaluated. Pcsk9 KO presented reduced running resistance coupled to echocardiographic abnormalities suggestive of heart failure with preserved ejection fraction (HFpEF). Heart mitochondrial activity, following maximal coupled and uncoupled respiration, was reduced in Pcsk9 KO mice compared to WT mice and was coupled to major changes in cardiac metabolism together with increased expression of LDLR and CD36 and with lipid accumulation. A similar phenotype was observed in Pcsk9/Ldlr DKO, thus excluding a contribution for LDLR to cardiac impairment observed in Pcsk9 KO mice. Heart function profiling of the liver selective Pcsk9 KO model further excluded the involvement of circulating PCSK9 in the development of HFpEF, pointing to a possible role locally produced PCSK9. Concordantly, carriers of the R46L loss-of-function variant for PCSK9 presented increased left ventricular mass but similar ejection fraction compared to matched control subjects.ConclusionPCSK9 deficiency impacts cardiac lipid metabolism in an LDLR independent manner and contributes to the development of HFpEF.
Project description:The effects of iron deficiency (ID) have been widely studied in heart failure (HF) with reduced ejection fraction. On the other hand, studies in HF with preserved ejection fraction (HFpEF) are few and have included small numbers of participants. The aim of this study was to assess the role that ID plays in functional capacity and quality of life (QoL) in HFpEF while comparing several iron-related biomarkers to be used as potential predictors. ID was defined as ferritin <100 ng/mL or transferrin saturation <20%. Submaximal exercise capacity, measured by the 6-min walking test (6MWT), and QoL, assessed by the Minnesotta Living with Heart Failure Questionnaire (MLHFQ), were compared between iron deficient patients and patients with normal iron status. A total of 447 HFpEF patients were included in the present cross-sectional study, and ID prevalence was 73%. Patients with ID performed worse in the 6MWT compared to patients with normal iron status (ID 271 ± 94 m vs. non-ID 310 ± 108 m, p < 0.01). They also scored higher in the MLHFQ, denoting worse QoL (ID 49 ± 22 vs. non-ID 43 ± 23, p = 0.01). Regarding iron metabolism biomarkers, serum soluble transferrin receptor (sTfR) was the strongest independent predictor of functional capacity (? = -63, p < 0.0001, R2 0.39) and QoL (? = 7.95, p < 0.0001, R2 0.14) in multivariate models. This study postulates that ID is associated with worse functional capacity and QoL in HFpEF as well, and that sTfR is the best iron-related biomarker to predict both. Our study also suggests that the effects of ID could differ among HFpEF patients by left ventricular ejection fraction.
Project description:Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence as the general population ages. Poorly managed heart failure symptoms of decompensated HFpEF is one of the most common reasons for prolonged hospital admission. The high rate of morbidity and mortality associated with HFpEF is compounded by a poor understanding of the underpinning pathophysiology. Randomized controlled trials have so far been unable to identify an evidence base for reducing morbidity and mortality in patients with HFpEF, although there is some evidence to support quality of life (QOL) improvement. In this review, we described the recent advances on the pathophysiological understanding of HFpEF, the current and emerging treatment strategies, and what this may mean for individual patients. Potential treatments for HFpEF were divided into their relative management strategies and the current evidence assessed for effect on HFpEF mortality, hospital admission frequency, and QOL improvement. Overall, the understanding of HFpEF pathophysiology is improving and has been made a priority in identifying potential therapeutic targets. There is growing evidence that patients with ejection fractions (EF) of less than 60% may obtain a mortality benefit from ACE-inhibitors, angiotensin-neprilysin inhibitors, Angiotensin Receptor Blockers, and Mineralocorticoid Receptor Antagonists. However, this covers only a small proportion of the HFpEF spectrum. Therefore, currently there are no universal treatment strategies recommended for HFpEF, and management should focus on an individualised approach and this should take into account the comorbidities of each patient.
Project description:Background Meigs’ syndrome is a rare disease characterized by a triad of presentations, including benign ovarian tumor, ascites, and pleural effusion. However, a clinical diagnosis of Meigs’ syndrome remains challenging because pleural and ascitic effusions can be common findings in a variety of underlying conditions. Furthermore, these findings can often be misdiagnosed as pleural and peritoneal dissemination caused by potentially malignant tumors, leading to the administration of improper treatment. Case presentation We described a case of an 85-year-old postmenopausal female patient with atypical Meigs’ syndrome presenting with right-sided pleural effusion, notable leg edema, and trivial ascites, which was initially mistaken as heart failure with preserved ejection fraction. However, pleural effusion was totally ineffective against diuretic therapy. Subsequently, thoracentesis yielded serosanguineous exudative effusion. Moreover, refractory pleural effusions and abdominal/pelvic computed tomography and magnetic resonance imaging findings strongly suggested bilateral malignant ovarian tumors with pleural dissemination. Repetitive negative cytological results allowed the patient to undergo bilateral salpingo-oophorectomy. Finally, a definitive diagnosis of Meigs’ syndrome was made by confirming the presence of a benign mitotically active cellular fibroma of the ovary by pathology and that pleural effusion resolved following tumor resection. Conclusions Our case highlights the clinical importance of assessing Meigs’ syndrome in the diagnostic workup of pleural effusion in postmenopausal female patients. Given the favorable prognosis of Meigs’ syndrome, clinicians should consider surgical resection, even with potentially malignant ovarian tumors with accompanying pleural effusion, ascites, or both.
Project description:The aim of this study was to determine whether left atrial ejection fraction (LAEF) quantified with cardiovascular magnetic resonance (CMR) was different between heart failure with preserved ejection fraction (HFpEF) and controls, and its relation to prognosis. As part of our single-centre, prospective, observational study, 188 subjects (HFpEF n?=?140, controls n?=?48) underwent phenotyping with contrast-enhanced CMR, transthoracic echocardiography, blood sampling and six-minute walk testing. LAEF was calculated using the biplane method. Atrial fibrillation (AF) was present in 43 (31%) of HFpEF subjects. Overall, LAEF (%) was lower in HFpEF patients inclusive of AF (32?±?16) or those in sinus rhythm alone (41?±?12) compared to controls (51?±?11), p?<?0.0001. LAEF correlated inversely with maximal and minimal left atrial volumes indexed (r?=??-?0.602, r?=??-?0.762), and plasma N-terminal pro-atrial natriuretic peptide (r?=??-?0.367); p?<?0.0001. During median follow-up (1429 days), there were 67 composite events of all-cause death or hospitalization for heart failure (22 deaths, 45 HF hospitalizations) in HFpEF. Lower LAEF (below median) was associated with an increased risk of composite endpoints (Log-Rank: all p?=?0.028; sinus p?=?0.036). In multivariable Cox regression analysis, LAEF (adjusted hazard ratio [HR] 0.767, 95% confidence interval [CI] 0.591-0.996; p?=?0.047) and indexed extracellular volume (HR 1.422, CI 1.015-1.992; p?=?0.041) were the only parameters that remained significant when added to a base prognostic model comprising age, prior HF hospitalization, diastolic blood pressure, lung disease, NYHA, six-minute-walk-test-distance, haemoglobin, creatinine and B-type natriuretic peptide. CMR-derived LAEF is lower in HFpEF compared to healthy controls and is a strong prognostic biomarker.
Project description:Heart failure is defined as a clinical syndrome and is known to present with a number of different pathophysiological patterns. There is a remarkable degree of variation in measures of left ventricular systolic emptying and this has been used to categorise heart failure into two separate types: low ejection fraction (EF) heart failure or HF-REF and high EF heart failure or HF-PEF. Here we review the pathophysiology, epidemiology and management of HF-PEF and argue that sharp separation of heart failure into two forms is misguided and illogical, and the present scarcity of clinical trial evidence for effective treatment for HF-PEF is a problem of our own making; we should never have excluded patients from major trials on the basis of EF in the first place. Whilst as many heart failure patients have preserved EFs as reduced we have dramatically under-represented HF-PEF patients in trials. Only four trials have been performed in HF-PEF specifically, and another two trials that recruited both HF-PEF and HF-REF can be considered. When we consider the similarity in outcomes and neurohormonal activation between HF-REF and HF-REF, the vast corpus of trial data that we have to attest to the efficacy of various treatment (angiotensin-converting-enzyme [ACE] inhibitors, angiotensin receptor blockers [ARBs], beta-blockers and aldosterone antagonists) in HF-REF, and the much more limited number of trials of similar agents showing near statistically significant benefits in HF-PEF the time has come rethink our management of HF-PEF, and in particular our selection of patients for trials.
Project description:PURPOSE OF REVIEW:Heart failure with preserved ejection fraction (HFpEF) is a relatively new disease entity used in medical terminology; however, both the number of patients and its clinical significance are growing. HFpEF used to be seen as a mild condition; however, the symptoms and quality of life of the patients are comparable to those with reduced ejection fraction. The disease is much more complex than previously thought. In this article, information surrounding the etiology, diagnosis, prognosis, and possible therapeutic options of HFpEF are reviewed and summarized. RECENT FINDINGS:It has recently been proposed that heart failure (HF) is rather a heterogeneous syndrome with a spectrum of overlapping and distinct characteristics. HFpEF itself can be distilled into different phenotypes based on the underlying biology. The etiological factors of HFpEF are unclear; however, systemic low-grade inflammation and microvascular damage as a consequence of comorbidities associated with endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis are considered to play a crucial role in the pathogenesis of a disease. The H2FPEF score and the HFpEF nomogram are recently validated highly sensitive tools employed for risk assessment of subclinical heart failure. Despite numerous studies, there is still no evidence-based pharmacotherapy for HFpEF and the mortality and morbidity associated with HFpEF remain high. A better understanding of the etiological factors, the impact of comorbidities, the phenotypes of the disease, and implementation of machine learning algorithms may play a key role in the development of future therapeutic strategies.
Project description:BACKGROUND:The role of coronary microvascular disease and its impact on functional and energetic reserve in heart failure with preserved ejection fraction (HFpEF) remains unclear. We hypothesized that in response to submaximal pharmacologic stress (dobutamine), patients with HFpEF have impairment in left ventricular (LV) myocardial mechanical (external work [EW]), energetic (myocardial O2 consumption [MVO2]), and myocardial blood flow (MBF) reserve. We further assessed whether coupling of MBF to EW is impaired in HFpEF and associated with compensatory increases or pathological decreases in myocardial O2 extraction. Lastly, we assessed whether coupling of MVO2 to EW (mechanical efficiency) was impaired in HFpEF. METHODS AND RESULTS:In prospectively enrolled patients with HFpEF (n=19) and age/sex-matched healthy controls (n=19), we performed 11C-acetate positron emission tomography assessing MVO2 and MBF at rest and during dobutamine infusion. EW was calculated as stroke volume (echo)×end-systolic pressure×heart rate. At rest, compared with controls, patients with HFpEF had higher LV EW, MVO2, and MBF. With dobutamine, LV EW, MVO2, and MBF increased in both HFpEF and controls; however, the magnitude of increases was significantly smaller in HFpEF. In both groups, MBF increased in relation to EW, but in HFpEF, the slope of the relationship was significantly smaller than in controls. Myocardial O2 extraction was increased in HFpEF. Mechanical efficiency was similar in HFpEF and controls. In a post hoc analysis, HFpEF patients with LV hypertrophy (n=10) had significant reductions in LV mechanical efficiency relative to controls. CONCLUSIONS:In HFpEF during submaximal dobutamine stress, there is myocardial mechanical-, energetic- and flow-reserve dysfunction with impaired coupling of blood flow to demand and slight increases in myocardial O2 extraction. These findings provide evidence that coronary microvascular dysfunction is present in HFpEF, limits O2 supply relative to demand, and is associated with reserve dysfunction.