Project description:Interim immunogenicity and efficacy data for the Ad26.COV2.S vaccine for COVID-19 have recently been reported 1-3 . We describe here the 8-month durability of humoral and cellular immune responses in 20 individuals who received one or two doses of 5Ã-10 10 vp or 10 11 vp Ad26.COV2.S and in 5 participants who received placebo 2 . We evaluated antibody and T cell responses on day 239, which was 8 months after the single-shot vaccine regimen (N=10) or 6 months after the two-shot vaccine regimen (N=10), although the present study was not powered to compare these regimens 3 . We also report neutralizing antibody responses against the parental SARS-CoV-2 WA1/2020 strain as well as against the SARS-CoV-2 variants D614G, B.1.1.7 (alpha), B.1.617.1 (kappa), B.1.617.2 (delta), P.1 (gamma), B.1.429 (epsilon), and B.1.351 (beta).
Project description:Understanding immune memory to COVID-19 vaccines is critical for the design and optimal vaccination schedule for curbing the COVID-19 pandemic. Here, we assessed the status of humoral and cellular immune responses at 1, 3, 6, and 12 months after two-dose CoronaVac vaccination. A total of 150 participants were enrolled, and 136 of them completed the study through the 12-month endpoint. Our results show that, at 1 month after vaccination, both binding and neutralizing antibodies could be detected; the seropositive rate of binding antibodies and seroconversion rate of neutralizing antibodies were 99% and 50%, respectively. From 3 to 12 months, the binding and neutralizing antibodies declined over time. At 12 months, the binding and neutralizing antibodies were still detectable and significantly higher than the baseline. Gamma interferon (IFN-γ) and interleukin 2 (IL-2) secretion specifically induced by the receptor-binding domain (RBD) persisted at high levels until 6 months and could be observed at 12 months, while the levels of IL-5 and granzyme B (GzmB) were hardly detected, demonstrating a Th1-biased response. In addition, specific CD4+ T central memory (TCM), CD4+ effector memory (TEM), CD8+ TEM, and CD8+ terminal effector (TE) cells were all detectable and functional up to 12 months after the second dose, as the cells produced IFN-γ, IL-2, and GzmB in response to stimulation of SARS-CoV-2 RBD. Our work provides evidence that CoronaVac induced not only detectable binding and neutralizing antibody responses, but also functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells for up to 12 months. IMPORTANCE CoronaVac is an inactivated vaccine containing whole-virion SARS-CoV-2, which has been approved in 43 countries for emergency use as of 26 November 2021. However, the long-term immune persistence of the CoronaVac vaccine is still unknown. Here, we reported the status of the persistence of antibodies and cellular responses within 12 months after two doses of CoronaVac. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.
Project description:SARS-CoV-2 vaccines BNT162b2, mRNA-1273, and Ad26.COV2.S received emergency use authorization by the U.S. Food and Drug Administration in 2020/2021. Individuals being vaccinated were invited to participate in a prospective longitudinal comparative study of immune responses elicited by the three vaccines. In this observational cohort study, immune responses were evaluated using a SARS-CoV-2 spike protein receptor-binding domain ELISA, SARS-CoV-2 virus neutralization assays and an IFN- γ ELISPOT assay at various times over six months following initial vaccination. mRNA-based vaccines elicited higher magnitude humoral responses than Ad26.COV2.S; mRNA-1273 elicited the most durable humoral response, and all humoral responses waned over time. Neutralizing antibodies against the Delta variant were of lower magnitude than the wild-type strain for all three vaccines. mRNA-1273 initially elicited the greatest magnitude of T cell response, but this declined by 6 months. Declining immunity over time supports the use of booster dosing, especially in the setting of emerging variants.
Project description:Clinical trials and real-world evidence on COVID-19 vaccines have shown their effectiveness against severe disease and death but the durability of protection remains unknown. We analysed the humoral and T-cell immune responses in 110 healthcare workers (HCWs) vaccinated according to the manufacturer's recommended schedule of dose 2 three weeks after dose 1 from a prospective on-going cohort in early 2021, 3 and 6 months after full vaccination with the BNT162b2 mRNA vaccine. Anti-RBD IgG titres were lower in HCWs over 60 years old 3 months after the second dose (p=0.03) and declined in all the subjects between 3 and 6 months with a median percentage change of -58.5%, irrespective of age and baseline comorbidities. Specific T-cell response measured by IGRA declined over time by at least 42% (median) in 91 HCWs and increased by 33% (median) in 17 others. Six HCWs had a negative T-cell response at 6 months. Ongoing follow-up should provide correlates of long-term protection according to the different immune response profiles observed. COVIDIM study was registered under the number NCT04896788 on clinicaltrials.gov.
Project description:The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 33-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.
Project description:The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 59-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points, suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.
Project description:The evaluation of durable immune responses is important in HIV vaccine research and development. The efficiency of such evaluation could be increased by incorporating predictors of the responses in the statistical analysis. In this paper, we investigated whether and how baseline demographic variables and immune responses measured two weeks after vaccination predicted durable immune responses measured six months later.We included data from seven preventive HIV vaccine regimens evaluated in three clinical trials: a Phase 1 study of four DNA, NYVAC and/or AIDSVAX vaccine regimens (HVTN096), a Phase 2 study of two DNA and/or MVA vaccine regimens (HVTN205), and a Phase 3 study of a single ALVAC/AIDSVAX regimen (RV144). Regularized random forests and linear regression models were used to identify and evaluate predictors of the positivity and magnitude of durable immune responses.We analyzed 201 vaccine recipients with data from 10 to 127 immune response biomarkers, and 3-5 demographic variables. The best prediction of participants' durable response positivity based on two-week responses rendered up to close-to-perfect accuracy; the best prediction of participants' durable response magnitude rendered correlation coefficients between the observed and predicted responses ranging up to 0.91. Though prediction performances differed among biomarkers, durable immune responses were best predicted by the two-week response level of the same biomarker. Adding demographic information and two-week response levels of different biomarkers provided little or no improvement in the predictions.For some biomarkers and for the vaccines we studied, two-week post-vaccination responses can well predict durable responses six months later. Therefore, if immune response durability is only assessed in a sub-sample of vaccine recipients, statistical analyses of durable responses will have increased efficiency by incorporating two-week response data. Further research is needed to generalize the findings to other vaccine regimens and biomarkers. Clinicaltrials.gov identifiers: NCT01799954, NCT00820846, NCT00223080.
Project description:Coronavac is a widely used SARS-CoV-2 inactivated vaccine, but its long-term immune response assessment is still lacking. We evaluated SARS-CoV-2-specific immune responses, including T cell activation markers, antigen-specific cytokine production and antibody response following vaccination in 53 adult and elderly individuals participating in a phase 3 clinical trial. Activated follicular helper T (Tfh), non-Tfh and memory CD4+ T cells were detected in almost all subjects early after the first vaccine dose. Activated memory CD4+ T cells were predominantly of central and effector memory T cell phenotypes and were sustained for at least 6 months. We also detected a balanced Th1-, Th2- and Th17/Th22-type cytokine production that was associated with response over time, together with particular cytokine profile linked to poor responses in older vaccinees. SARS-CoV-2-specific IgG levels peaked 14 days after the second dose and were mostly stable over one year. CoronaVac was able to induce a potent and durable antiviral antigen-specific cellular response and the cytokine profiles related to the response over time and impacted by the senescence were defined.