Project description:BackgroundThe role of β-blockers in the critically ill has been studied, and data on the protective effects of these drugs on critically ill patients have been repeatedly reported in the literature over the last two decades. However, consensus and guidelines by scientific societies on the use of β-blockers in critically ill patients are still lacking. The purpose of this document is to support the clinical decision-making process regarding the use of β-blockers in critically ill patients. The recipients of this document are physicians, nurses, healthcare personnel, and other professionals involved in the patient's care process.MethodsThe Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI) selected a panel of experts and asked them to define key aspects underlying the use of β-blockers in critically ill adult patients. The methodology followed by the experts during this process was in line with principles of modified Delphi and RAND-UCLA methods. The experts developed statements and supportive rationales in the form of informative text. The overall list of statements was subjected to blind votes for consensus.ResultsThe literature search suggests that adrenergic stress and increased heart rate in critically ill patients are associated with organ dysfunction and increased mortality. Heart rate control thus seems to be critical in the management of the critically ill patient, requiring careful clinical evaluation aimed at both the differential diagnosis to treat secondary tachycardia and the treatment of rhythm disturbance. In addition, the use of β-blockers for the treatment of persistent tachycardia may be considered in patients with septic shock once hypovolemia has been ruled out. Intravenous application should be the preferred route of administration.Conclusionβ-blockers protective effects in critically ill patients have been repeatedly reported in the literature. Their use in the acute treatment of increased heart rate requires understanding of the pathophysiology and careful differential diagnosis, as all causes of tachycardia should be ruled out and addressed first.
Project description:Bloodstream infection (BSI) is defined by positive blood cultures in a patient with systemic signs of infection and may be either secondary to a documented source or primary-that is, without identified origin. Community-acquired BSIs in immunocompetent adults usually involve drug-susceptible bacteria, while healthcare-associated BSIs are frequently due to multidrug-resistant (MDR) strains. Early adequate antimicrobial therapy is a key to improve patient outcomes, especially in those with criteria for sepsis or septic shock, and should be based on guidelines and direct examination of available samples. Local epidemiology, suspected source, immune status, previous antimicrobial exposure, and documented colonization with MDR bacteria must be considered for the choice of first-line antimicrobials in healthcare-associated and hospital-acquired BSIs. Early genotypic or phenotypic tests are now available for bacterial identification and early detection of resistance mechanisms and may help, though their clinical impact warrants further investigations. Initial antimicrobial dosing should take into account the pharmacokinetic alterations commonly observed in ICU patients, with a loading dose in case of sepsis or septic shock. Initial antimicrobial combination attempting to increase the antimicrobial spectrum should be discussed when MDR bacteria are suspected and/or in the most severely ill patients. Source identification and control should be performed as soon as the hemodynamic status is stabilized. De-escalation from a broad-spectrum to a narrow-spectrum antimicrobial may reduce antibiotic selection pressure without negative impact on mortality. The duration of therapy is usually 5-8 days though longer durations may be discussed depending on the underlying illness and the source of infection. This narrative review covers the epidemiology, diagnostic workflow and therapeutic aspects of BSI in ICU patients and proposed up-to-date expert statements.
Project description:BackgroundThe use of processed electroencephalography (pEEG) for depth of sedation (DOS) monitoring is increasing in anesthesia; however, how to use of this type of monitoring for critical care adult patients within the intensive care unit (ICU) remains unclear.MethodsA multidisciplinary panel of international experts consisting of 21 clinicians involved in monitoring DOS in ICU patients was carefully selected on the basis of their expertise in neurocritical care and neuroanesthesiology. Panelists were assigned four domains (techniques for electroencephalography [EEG] monitoring, patient selection, use of the EEG monitors, competency, and training the principles of pEEG monitoring) from which a list of questions and statements was created to be addressed. A Delphi method based on iterative approach was used to produce the final statements. Statements were classified as highly appropriate or highly inappropriate (median rating ≥ 8), appropriate (median rating ≥ 7 but < 8), or uncertain (median rating < 7) and with a strong disagreement index (DI) (DI < 0.5) or weak DI (DI ≥ 0.5 but < 1) consensus.ResultsAccording to the statements evaluated by the panel, frontal pEEG (which includes a continuous colored density spectrogram) has been considered adequate to monitor the level of sedation (strong consensus), and it is recommended by the panel that all sedated patients (paralyzed or nonparalyzed) unfit for clinical evaluation would benefit from DOS monitoring (strong consensus) after a specific training program has been performed by the ICU staff. To cover the gap between knowledge/rational and routine application, some barriers must be broken, including lack of knowledge, validation for prolonged sedation, standardization between monitors based on different EEG analysis algorithms, and economic issues.ConclusionsEvidence on using DOS monitors in ICU is still scarce, and further research is required to better define the benefits of using pEEG. This consensus highlights that some critically ill patients may benefit from this type of neuromonitoring.
Project description:Background Decreased serum albumin level (SAL) is associated with adverse clinical outcomes. We designed the present study to further assess the prognostic value of SAL in critically ill patients based on data from large intensive care unit (ICU) databases. Methods This retrospective cohort study recruited 18,353 patients from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Restricted cubic splines (RCS) were performed to visualize the association of SAL at admission with ICU and hospital mortalities. The prognostic value of SAL was analyzed using logistic regression models and receiver operating characteristic (ROC) curves in overall patients and subgroups. Results Restricted cubic splines revealed rapid increasing risks in ICU and hospital mortalities when SAL declined to below 30 g/l. Patients with SAL <30 g/l (n = 6,069) had higher ICU (13.7% vs. 6.4%, p < 0.001) and hospital (23.9% vs. 10.7%, p < 0.001) mortalities than those with SAL ≥30 g/l. Multivariable logistic regression model revealed that SAL <30 g/l independently correlated with higher risks of both ICU (odds ratio [OR]: 1.20, 95% confidence interval [CI]: 1.07–1.36) and hospital (OR: 1.51, 95% CI: 1.37–1.66) mortalities. However, the association diminished in patients with cirrhosis (OR: 1.16, 95% CI: 0.91–1.49 for ICU mortality; OR: 1.21, 95% CI: 1.00–1.48 for hospital mortality). ROC curves revealed a poor performance of SAL in predicting mortalities, both in overall patients and in those with cirrhosis. Conclusions Decreased SAL is associated with increased risk of mortality. However, it possesses low sensitivity and specificity for outcome prediction in critically ill patients, especially in those with cirrhosis.
Project description:BackgroundTo produce statements based on the available evidence and an expert consensus (as members of the Lung Ultrasound Working Group of the Italian Society of Analgesia, Anesthesia, Resuscitation, and Intensive Care, SIAARTI) on the use of lung ultrasound for the management of patients with COVID-19 admitted to the intensive care unit.MethodsA modified Delphi method was applied by a panel of anesthesiologists and intensive care physicians expert in the use of lung ultrasound in COVID-19 intensive critically ill patients to reach a consensus on ten clinical questions concerning the role of lung ultrasound in the following: COVID-19 diagnosis and monitoring (with and without invasive mechanical ventilation), positive end expiratory pressure titration, the use of prone position, the early diagnosis of pneumothorax- or ventilator-associated pneumonia, the process of weaning from invasive mechanical ventilation, and the need for radiologic chest imaging.ResultsA total of 20 statements were produced by the panel. Agreement was reached on 18 out of 20 statements (scoring 7-9; "appropriate") in the first round of voting, while 2 statements required a second round for agreement to be reached. At the end of the two Delphi rounds, the median score for the 20 statements was 8.5 [IQR 8.9], and the agreement percentage was 100%.ConclusionThe Lung Ultrasound Working Group of the Italian Society of Analgesia, Anesthesia, Resuscitation, and Intensive Care produced 20 consensus statements on the use of lung ultrasound in COVID-19 patients admitted to the ICU. This expert consensus strongly suggests integrating lung ultrasound findings in the clinical management of critically ill COVID-19 patients.
Project description:The main concern in shock and resuscitation is whether the microcirculation can carry adequate oxygen to the tissues and remove waste. Identification of an intact coherence between macro- and microcirculation during states of shock and resuscitation shows a functioning regulatory mechanism. However, loss of hemodynamic coherence between the macro and microcirculation can be encountered frequently in sepsis, cardiogenic shock, or any hemodynamically compromised patient. This loss of hemodynamic coherence results in an improvement in macrohemodynamic parameters following resuscitation without a parallel improvement in microcirculation resulting in tissue hypoxia and tissue compromise. Hand-held vital microscopes (HVMs) can visualize the microcirculation and help to diagnose the nature of microcirculatory shock. Although treatment with the sole aim of recruiting the microcirculation is as yet not realized, interventions can be tailored to the needs of the patient while monitoring sublingual microcirculation. With the help of the newly introduced software, called MicroTools, we believe sublingual microcirculation monitoring and diagnosis will be an essential point-of-care tool in managing shock patients.
Project description:Background: Alternative tobacco product (ATP) use has bee linked to critical illness, however, few studies have examined the use of these substances in critically ill populations. We sought to examine ATP use within critically ill patients and to define barriers in accurately assessing use within this population. Methods: We prospectively studied 533 consecutive patients from the Early Assessment of Renal and Lung Injury study, enrolled between 2013 and 2016 at a tertiary referral center and a safety-net hospital. ATP use information (electronic cigarettes, cigars, pipes, hookahs/waterpipes, and snus/chewing tobacco) was obtained from the patient or surrogate using a detailed survey. Reasons for non-completion of the survey were recorded, and differences between survey responders vs. non-responders, self- vs. surrogate responders, and ATP users vs. non-users were explored. Results: Overall, 80% (n = 425) of subjects (56% male) completed a tobacco product use survey. Of these, 12.2% (n = 52) reported current ATP use, while 5.6% reported using multiple ATP products. When restricted to subjects who were self-responders, 17% reported ATP use, while 10% reported current cigarette smoking alone. The mean age of ATP users was 57 ± 17 years. Those who did not complete a survey were sicker and more likely to have died during admission. Subjects who completed the survey as self-responders reported higher levels of ATP use than ones with surrogate responders (p < 0.0001). Conclusion: ATP use is common among critically ill patients despite them being generally older than traditional users. Survey self-responders were more likely than surrogate responders to report use. These findings highlight the importance of improving our current methods of surveillance of ATP use in older adults in the outpatient setting.