Ontology highlight
ABSTRACT: Objective
In Spring 2020, South Korea applied non-lockdown social distancing (avoiding mass gathering and non-essential social engagement, without restricting the movement of people who were not patients or contacts), testing-and-isolation (testing), and tracing-and-quarantine the contacts (contact tracing) to successfully control the first large-scale COVID-19 outbreak outside China. However, the relative contributions of these two interventions remain uncertain.Methods
We constructed an SEIR model of SARS-CoV-2 transmission (disproportionately through superspreading events) and fit the model to outbreak data in Daegu, South Korea, from February to April 2020. We assessed the effect of non-lockdown social distancing (population-wide control measures) and/or testing-contact tracing (individual-specific control measures), alone or combined, in terms of the basic reproductive number (R0) and the trajectory of the epidemic.Results
The point estimate for baseline R0 is 3.6 (sensitivity analyses range: 2.3 to 5.6). Combined interventions of non-lockdown social distancing and testing-contact tracing can suppress R0 to less than one and rapidly contain the epidemic, even under the worst scenario with a high baseline R0 of 5.6. In contrast, either intervention alone will fail to suppress R0. Non-lockdown social distancing alone just postpones the peak of the epidemic, while testing-contact tracing alone only flattens the curve but does not contain the outbreak.Conclusions
To successfully control a large-scale COVID-19 outbreak, both non-lockdown social distancing and testing-contact tracing must be implemented. The two interventions are synergistic.
SUBMITTER: Chen YH
PROVIDER: S-EPMC8320402 | biostudies-literature |
REPOSITORIES: biostudies-literature