Identification of Multi-Target Anti-AD Chemical Constituents From Traditional Chinese Medicine Formulae by Integrating Virtual Screening and In Vitro Validation.
Ontology highlight
ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens the health of the elderly. At present, no drugs have been proven to cure or delay the progression of the disease. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach provides an innovative and promising idea in search for new drugs against AD. In order to find potential multi-target anti-AD drugs from traditional Chinese medicine (TCM) formulae, a compound database derived from anti-AD Chinese herbal formulae was constructed and predicted by the anti-AD multi-target drug prediction platform established in our laboratory. By analyzing the results of virtual screening, 226 chemical constituents with 3 or more potential AD-related targets were collected, from which 16 compounds that were predicted to combat AD through various mechanisms were chosen for biological validation. Several cell models were established to validate the anti-AD effects of these compounds, including KCl, Aβ, okadaic acid (OA), SNP and H2O2 induced SH-SY5Y cell model and LPS induced BV2 microglia model. The experimental results showed that 12 compounds including Nonivamide, Bavachromene and 3,4-Dimethoxycinnamic acid could protect model cells from AD-related damages and showed potential anti-AD activity. Furthermore, the potential targets of Nonivamide were investigated by molecular docking study and analysis with CDOCKER revealed the possible binding mode of Nonivamide with its predicted targets. In summary, 12 potential multi-target anti-AD compounds have been found from anti-AD TCM formulae by comprehensive application of computational prediction, molecular docking method and biological validation, which laid a theoretical and experimental foundation for in-depth study, also providing important information and new research ideas for the discovery of anti-AD compounds from traditional Chinese medicine.
SUBMITTER: Zhang B
PROVIDER: S-EPMC8322649 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA