Project description:ObjectiveGrowing evidence suggests that neurodegenerative diseases are associated with metabolic disorders, but the mechanisms are still unclear. Better comprehension of this issue might provide a new strategy for treatment of neurodegenerative diseases. We investigated possible roles of adiponectin (APN), the anti-diabetes protein, in the pathogenesis of α-synucleinopathies.MethodsUsing biochemical and histological methods, we investigated autopsy brain of α-synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and analyzed the effects of APN in cellular and in mouse models of α-synucleinopathies.ResultsWe observed that APN is localized in Lewy bodies derived from α-synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. In neuronal cells expressing α-synuclein (αS), aggregation of αS was suppressed by treatment with recombinant APN in an AdipoRI-AMP kinase pathway-dependent manner. Concomitantly, phosphorylation and release of αS were significantly decreased by APN, suggesting that APN may be antineurodegenerative. In transgenic mice expressing αS, both histopathology and movement disorder were significantly improved by intranasal treatment with globular APN when the treatment was initiated in the early stage of the disease. In a mouse model, reduced levels of guanosine- and inosine- monophosphates, both of which are potential stimulators of aggregation of αS, might partly contribute to suppression of aggregation of αS by APN.InterpretationTaken together, APN may suppress neurodegeneration through modification of the metabolic pathway, and could possess a therapeutic potential against α-synucleinopathies.
Project description:Transcriptional dysregulation is an early feature of Huntington's disease (HD). We observed gene-specific changes in H3K4me3 at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a novel chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin (Htt) expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD. ChIP-seq for H3K4me3 in wild type and R6/2 cortex and striatum at 8 and 12 weeks.
Project description:Transcriptional dysregulation is an early feature of Huntington's disease (HD). We observed gene-specific changes in H3K4me3 at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a novel chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin (Htt) expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD. mRNA-seq in wild type and R6/2 cortex and striatum at 8 and 12 weeks.
Project description:Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neurons (MNs) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice, significantly improved their motor function, delayed disease progression and extended survival. Moreover, MIF treatment reduced neuroinflammation and misfolded SOD1 accumulation, rescued MNs and corrected dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we revealed low MIF levels in human induced pluripotent stem cell derived MNs from familial ALS patients with different genetic mutations, as well as in post-mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.
Project description:Transcriptional dysregulation is an early feature of Huntington's disease (HD). We observed gene-specific changes in H3K4me3 at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a novel chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin (Htt) expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD.
Project description:Transcriptional dysregulation is an early feature of Huntington's disease (HD). We observed gene-specific changes in H3K4me3 at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a novel chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin (Htt) expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD.
Project description:Ferroptosis is a novel type of regulated cell death driven by the excessive accumulation of iron-dependent lipid peroxidation. Therapy-resistant tumor cells, particularly those in the mesenchymal-like state and prone to metastasis, are highly susceptible to ferroptosis, suggesting that induction of ferroptosis in tumor cells is a promising strategy for cancer therapy. Although ferroptosis is regulated at various levels, ubiquitination is key to post-translational regulation of ferroptotic cell death. E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are the most remarkable ubiquitin system enzymes, whose dysregulation accounts for the progression of multiple cancers. E3s are involved in the attachment of ubiquitin to substrates for their degradation, and this process is reversed by DUBs. Accumulating evidence has highlighted the important role of ubiquitin system enzymes in regulating the sensitivity of ferroptosis. Herein, we will portray the regulatory networks of ferroptosis mediated by E3s or DUBs and discuss opportunities and challenges for incorporating this regulation into cancer therapy.
Project description:Mutations of GBA1, the gene encoding glucocerebrosidase, represent a common genetic risk factor for developing the synucleinopathies Parkinson disease (PD) and dementia with Lewy bodies. PD patients with or without GBA1 mutations also exhibit lower enzymatic levels of glucocerebrosidase in the central nervous system (CNS), suggesting a possible link between the enzyme and the development of the disease. Previously, we have shown that early treatment with glucocerebrosidase can modulate ?-synuclein aggregation in a presymptomatic mouse model of Gaucher-related synucleinopathy (Gba1(D409V/D409V)) and ameliorate the associated cognitive deficit. To probe this link further, we have now evaluated the efficacy of augmenting glucocerebrosidase activity in the CNS of symptomatic Gba1(D409V/D409V) mice and in a transgenic mouse model overexpressing A53T ?-synuclein. Adeno-associated virus-mediated expression of glucocerebrosidase in the CNS of symptomatic Gba1(D409V/D409V) mice completely corrected the aberrant accumulation of the toxic lipid glucosylsphingosine and reduced the levels of ubiquitin, tau, and proteinase K-resistant ?-synuclein aggregates. Importantly, hippocampal expression of glucocerebrosidase in Gba1(D409V/D409V) mice (starting at 4 or 12 mo of age) also reversed their cognitive impairment when examined using a novel object recognition test. Correspondingly, overexpression of glucocerebrosidase in the CNS of A53T ?-synuclein mice reduced the levels of soluble ?-synuclein, suggesting that increasing the glycosidase activity can modulate ?-synuclein processing and may modulate the progression of ?-synucleinopathies. Hence, increasing glucocerebrosidase activity in the CNS represents a potential therapeutic strategy for GBA1-related and non-GBA1-associated synucleinopathies, including PD.