Unknown

Dataset Information

0

Diagnosis of vertebral column pathologies using concatenated resampling with machine learning algorithms.


ABSTRACT: Medical diagnosis through the classification of biomedical attributes is one of the exponentially growing fields in bioinformatics. Although a large number of approaches have been presented in the past, wide use and superior performance of the machine learning (ML) methods in medical diagnosis necessitates significant consideration for automatic diagnostic methods. This study proposes a novel approach called concatenated resampling (CR) to increase the efficacy of traditional ML algorithms. The performance is analyzed leveraging four ML approaches like tree-based ensemble approaches, and linear machine learning approach for automatic diagnosis of inter-vertebral pathologies with increased. Besides, undersampling, over-sampling, and proposed CR techniques have been applied to unbalanced training dataset to analyze the impact of these techniques on the accuracy of each of the classification model. Extensive experiments have been conducted to make comparisons among different classification models using several metrics including accuracy, precision, recall, and F 1 score. Comparative analysis has been performed on the experimental results to identify the best performing classifier along with the application of the re-sampling technique. The results show that the extra tree classifier achieves an accuracy of 0.99 in association with the proposed CR technique.

SUBMITTER: Reshi AA 

PROVIDER: S-EPMC8323723 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Diagnosis of vertebral column pathologies using concatenated resampling with machine learning algorithms.

Reshi Aijaz Ahmad AA   Ashraf Imran I   Rustam Furqan F   Shahzad Hina Fatima HF   Mehmood Arif A   Choi Gyu Sang GS  

PeerJ. Computer science 20210722


Medical diagnosis through the classification of biomedical attributes is one of the exponentially growing fields in bioinformatics. Although a large number of approaches have been presented in the past, wide use and superior performance of the machine learning (ML) methods in medical diagnosis necessitates significant consideration for automatic diagnostic methods. This study proposes a novel approach called concatenated resampling (CR) to increase the efficacy of traditional ML algorithms. The  ...[more]

Similar Datasets

| S-EPMC6762068 | biostudies-literature
| S-EPMC7004343 | biostudies-literature
| S-EPMC6186128 | biostudies-literature
| S-EPMC8429560 | biostudies-literature
2023-01-25 | GSE223385 | GEO
| S-EPMC11655575 | biostudies-literature
| S-EPMC5831789 | biostudies-literature
| S-EPMC11462891 | biostudies-literature
| S-EPMC10572141 | biostudies-literature
| S-EPMC10230679 | biostudies-literature