Project description:Brugada syndrome (BrS) is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5). To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q) localized in the fourth segment of domain IV region (DIV-S4) in a Chinese Han family. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Co-expression of Wild-type (WT) or R1629Q Nav1.5 channel and hβ1 subunit were achieved in human embryonic kidney cells by transient transfection. Sodium currents were recorded using whole cell patch-clamp protocols. No significant changes between WT and R1629Q currents were observed in current density or steady-state activation. However, hyperpolarized shift of steady-state inactivation curve was identified in cells expressing R1629Q channel (WT: V1/2 = -81.1 ± 1.3 mV, n = 13; R1629Q: V1/2 = -101.7 ± 1.2 mV, n = 18). Moreover, R1629Q channel showed enhanced intermediate inactivation and prolonged recovery time from inactivation. In summary, this study reveals that R1629Q mutation causes a distinct loss-of-function of the channel due to alter its electrophysiological characteristics, and facilitates our understanding of biophysical mechanisms of BrS.
Project description:Brugada syndrome (BrS) is one of the major causes of sudden cardiac death in young people, while the underlying mechanisms are not completely understood. Here, we investigated the pathophysiological phenotypes and mechanisms using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from two BrS patients (BrS-CMs) carrying a heterozygous SCN5A mutation p.S1812X. Compared to CMs derived from healthy controls (Ctrl-CMs), BrS-CMs displayed a 50% reduction of I Na density, a 69.5% reduction of NaV1.5 expression, and the impaired localization of NaV1.5 and connexin 43 (Cx43) at the cell surface. BrS-CMs exhibited reduced action potential (AP) upstroke velocity and conduction slowing. The I to in BrS-CMs was significantly augmented, and the I CaL window current probability was increased. Our data indicate that the electrophysiological mechanisms underlying arrhythmia in BrS-CMs may involve both depolarization and repolarization disorders. Cilostazol and milrinone showed dramatic inhibitions of I to in BrS-CMs and alleviated the arrhythmic activity, suggesting their therapeutic potential for BrS patients.
Project description:BackgroundPhenotypes often differ even within family members carrying the same SCN5A mutation. We aimed to evaluate the genetic modifiers in a family with Brugada syndrome (BrS) and sick sinus syndrome (SSS) with an SCN5A mutation that causes the truncated alpha-subunit of cardiac Na channel protein.MethodsTo detect the genetic modifiers, we performed targeted panel sequencing of the coding region of 46 genes that are related to primary arrhythmia syndrome, by using a bench-top, next generation sequencer. Phenotype-genotype relationships were evaluated among the family members.ResultsIndex proband was a 13-year old (yo) boy with cardiac conduction defect as well as BrS. Genetic analysis revealed that he and his three asymptomatic family members carried a novel nonsense mutation: SCN5A-Q779X. Both genotype-positive mother and sister exhibited coved type ST elevation and his sister had SSS, whereas his elder brother exhibited saddleback type ST elevation induced by pilsicainide administration. We detected four non-synonymous variants (DSG2-R773K, SCN1B-L210P, -S248R, and -R250T) in the proband, his mother and his sister, but not in his brother.ConclusionPhenotypic differences between the proband and his brother carrying the same nonsense SCN5A mutation could be explained by modifiers such as SCN1B, and DSG2 gene variants.
Project description:Brugada Syndrome (BrS) is a genetic heart condition linked to sudden cardiac death. Though the SCN5A gene is primarily associated with BrS, there is a lack of comprehensive studies exploring the connection between SCN5A mutation locations and the clinical presentations of the syndrome. This study aimed to address this gap and gain further understanding of the syndrome. The investigation classified 36 high-risk BrS patients based on SCN5A mutations within the transmembrane/structured (TD) and intra-domain loops (IDLs) lacking a 3D structure. We characterized the intrinsically disordered regions (IDRs) abundant in IDLs, using bioinformatics tools to predict IDRs and post-translational modifications (PTMs) in NaV1.5. Interestingly, it was found that current predictive tools often underestimate the impacts of mutations in IDLs and disordered regions. Moreover, patients with SCN5A mutations confined to IDL regions-previously deemed 'benign'-displayed clinical symptoms similar to those carrying 'damaging' variants. Our research illuminates the difficulty in stratifying patients based on SCN5A mutation locations, emphasizing the vital role of IDLs in the NaV1.5 channel's functioning and protein interactions. We advocate for caution when using predictive tools for mutation evaluation in these regions and call for the development of improved strategies in accurately assessing BrS risk.
Project description:BackgroundBrugada syndrome (BrS) is characterized by the type 1 Brugada ECG pattern. Pathogenic rare variants in SCN5A (mutations) are identified in 20% of BrS families in whom incomplete penetrance and genotype-negative phenotype-positive individuals are observed. E1784K-SCN5A is the most common SCN5A mutation identified. We determined the association of a BrS genetic risk score (BrS-GRS) and SCN5A mutation type on BrS phenotype in BrS families with SCN5A mutations.MethodsSubjects with a spontaneous type 1 pattern or positive/negative drug challenge from cohorts harboring SCN5A mutations were recruited from 16 centers (n=312). Single nucleotide polymorphisms previously associated with BrS at genome-wide significance were studied in both cohorts: rs11708996, rs10428132, and rs9388451. An additive linear genetic model for the BrS-GRS was assumed (6 single nucleotide polymorphism risk alleles).ResultsIn the total population (n=312), BrS-GRS ≥4 risk alleles yielded an odds ratio of 4.15 for BrS phenotype ([95% CI, 1.45-11.85]; P=0.0078). Among SCN5A-positive individuals (n=258), BrS-GRS ≥4 risk alleles yielded an odds ratio of 2.35 ([95% CI, 0.89-6.22]; P=0.0846). In SCN5A-negative relatives (n=54), BrS-GRS ≥4 alleles yielded an odds ratio of 22.29 ([95% CI, 1.84-269.30]; P=0.0146). Among E1784K-SCN5A positive family members (n=79), hosting ≥4 risk alleles gave an odds ratio=5.12 ([95% CI, 1.93-13.62]; P=0.0011).ConclusionsCommon genetic variation is associated with variable expressivity of BrS phenotype in SCN5A families, explaining in part incomplete penetrance and genotype-negative phenotype-positive individuals. SCN5A mutation genotype and a BrS-GRS associate with BrS phenotype, but the strength of association varies according to presence of a SCN5A mutation and severity of loss of function.
Project description:AimsThe variant in SCN5A with the loss of function (LOF) effect in the cardiac Na+ channel (Nav1.5) is the definitive cause for Brugada syndrome (BrS), and the functional analysis data revealed that LOF variants are associated with poor prognosis. However, which variant types (e.g. missense or non-missense) affect the prognoses of those variant carriers remain unelucidated.Methods and resultsWe defined SCN5A LOF variants as all non-missense and missense variants that produce peak INa < 65% of wild-type previously confirmed by patch-clamp studies. The study population consisted of 76 Japanese BrS patients (74% patients were male and the median age [IQR] at diagnosis was 28 [14-45] years) with LOF type of SCN5A variants: 40 with missense and 36 with non-missense variants. Non-missense variant carriers presented significantly more severe cardiac conduction disorder compared to the missense variant carriers. During follow-up periods of 9.0 [5.0-14.0] years, compared to missense variants, non-missense variants were significant risk factors of lifetime lethal arrhythmia events (LAEs) (P = 0.023). When focusing only on the missense variants that produce no peak INa, these missense variant carriers exhibited the same clinical outcomes as those with non-missense (log-rank P = 0.325). After diagnosis, however, both variant types were comparable in risk of LAEs (P = 0.155).ConclusionWe identified, for the first time, that SCN5A non-missense variants were associated with higher probability of LAE than missense variants in BrS patients though it did not change significantly after diagnosis.
Project description:The identification of a pathogenic SCN5A variant confers an increased risk of conduction defects and ventricular arrhythmias (VA) in Brugada syndrome (BrS). However, specific aspects of sodium channel function that influence clinical phenotype have not been defined. A systematic literature search identified SCN5A variants associated with BrS. Sodium current (INa ) functional parameters (peak current, decay, steady-state activation and inactivation, and recovery from inactivation) and clinical features (conduction abnormalities [CA], spontaneous VA or family history of sudden cardiac death [SCD], and spontaneous BrS electrocardiogram [ECG]) were extracted. A total of 561 SCN5A variants associated with BrS were identified, for which data on channel function and clinical phenotype were available in 142. In the primary analysis, no relationship was found between any aspect of channel function and CA, VA/SCD, or spontaneous BrS ECG pattern. Sensitivity analyses including only variants graded pathogenic or likely pathogenic suggested that reduction in peak current and positive shift in steady-state activation were weakly associated with CA and VA/SCD, although sensitivity and specificity remained low. The relationship between in vitro assessment of channel function and BrS clinical phenotype is weak. The assessment of channel function does not enhance risk stratification. Caution is needed when extrapolating functional testing to the likelihood of variant pathogenicity.
Project description:Class IC antiarrhythmic agents may induce acquired forms of Brugada Syndrome. We have identified a novel mutation in SCN5A, the gene that encodes the ?-subunit of the human cardiac sodium channel (hNav1.5), in a patient who exhibited Brugada- type ECG changes during pharmacotherapy of atrial arrhythmias.To assess whether the novel mutation p.V1328M can cause drug induced Brugada Syndrome.Administration of pilsicainide, a class IC antiarrhythmic agent, caused Brugada- type ST elevation in a 66-year-old Japanese male who presented with paroxysmal atrial fibrillation (PAF), type I atrial flutter and inducible ventricular fibrillation (VF) during electrophysiological study. Genetic screening using direct sequencing identified a novel SCN5A variant, p.V1328M. Electrophysiological parameters of WT and p.V1328M and their effects on drug pharmacokinetics were studied using the patch-clamp method.Whole-cell sodium current densities were similar for WT and p.V1328M channels. While p.V1328M mutation did not affect the voltage-dependence of the activation kinetics, it caused a positive shift of voltage-dependent steady-state inactivation by 7 mV. The tonic block in the presence of pilsicainide was similar in WT and p.V1328M, when sodium currents were induced by a low frequency pulse protocol (q15s). On the contrary, p.V1328M mutation enhanced pilsicainide induced use-dependent block at 2 Hz. (Ki: WT, 35.8 ?M; V1328M, 19.3 ?M).Our study suggests that a subclinical SCN5A mutation, p.V1328M, might predispose individuals harboring it to drug-induced Brugada Syndrome.
Project description:BackgroundBrugada syndrome is a hereditary cardiac disease associated with mutations in ion channel genes. The clinical features include ventricular fibrillation, syncope, and sudden cardiac death. A family with Brugada syndrome with sudden cardiac death was analyzed to locate the associated mutation in the SCN5A gene.Methods and resultsThree generations of a Han Chinese family with Brugada syndrome were recruited in the study; their clinical phenotype data were collected and DNA samples extracted from the peripheral blood. Next-generation sequencing was carried out in the proband, and candidate genes and mutations were screened using the full exon capture technique. The family members who participated in the survey were tested for possible mutations using Sanger sequencing. Six family members were diagnosed with Brugada syndrome, including four asymptomatic patients. A newly discovered heterozygous mutation in the proband was located in exon 25 of SCN5A (NM_000335.5) at c.4313dup(p.Trp1439ValfsTer32). Among the surviving family members, only those with a Brugada wave on their electrocardiogram carried the c.4313dup(p.Trp1439ValfsTer32) variant. Bioinformatics prediction revealed that the frameshift of the c.4313dup (p.Trp1439ValfsTer32) mutant led to a coding change of 32 amino acids, followed by a stop codon, resulting in a truncated protein product.ConclusionThe newly discovered mutation site c.4313dup(p.Trp1439ValfsTer32) in exon 25 of SCN5A may be the molecular genetic basis of the family with Brugada syndrome.