Project description:Copper (Cu) is an essential trace element but toxic in free form. After cell uptake, Cu is transferred, via direct protein-protein interactions, from the chaperone Atox1 to the Wilson disease protein (WD) for incorporation into Cu-dependent enzymes. Cu binds to a conserved C(1)XXC(2) motif in the chaperone as well as in each of the cytoplasmic metal-binding domains of WD. Here, we dissect mechanism and thermodynamics of Cu transfer from Atox1 to the fourth metal binding domain of WD. Using chromatography and calorimetry together with single Cys-to-Ala variants, we demonstrate that Cu-dependent protein heterocomplexes require the presence of C(1) but not C(2). Comparison of thermodynamic parameters for mutant versus wild type reactions reveals that the wild type reaction involves strong entropy-enthalpy compensation. This property is explained by a dynamic inter-conversion of Cu-Cys coordinations in the wild type ensemble and may provide functional advantage by protecting against Cu mis-ligation and bypassing enthalpic traps.
Project description:The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind in a cleft formed by the interface of two neighboring ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (?H, kcal/mol) from -4.9 (2) and -7.5 (3) to -6.2 (4) and -14.5 (5), but also a less favorable binding entropy (-T?S, kcal/mol) from -2.3 (2) and -1.3 (3) to -0.5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, ?M) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 ?M L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 ?M, respectively. The binding mode of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely explanation of the underlying structural mechanism.
Project description:The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy (?H) and entropy (T?S) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ?H vs. -T?S plots). However, transforming the thermodynamic data into ??-plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ??H versus ??G plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (??H and -T??S opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (??H and -T??S of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.
Project description:Human purine nucleoside phosphorylase (PNP) belongs to the trimeric class of PNPs and is essential for catabolism of deoxyguanosine. Genetic deficiency of PNP in humans causes a specific T-cell immune deficiency, and transition state analogue inhibitors of PNP are in development for treatment of T-cell cancers and autoimmune disorders. Four generations of Immucillins have been developed, each of which contains inhibitors binding with picomolar affinity to human PNP. Full inhibition of PNP occurs upon binding to the first of three subunits, and binding to subsequent sites occurs with negative cooperativity. In contrast, substrate analogue and product bind without cooperativity. Titrations of human PNP using isothermal calorimetry indicate that binding of a structurally rigid first-generation Immucillin (K(d) = 56 pM) is driven by large negative enthalpy values (DeltaH = -21.2 kcal/mol) with a substantial entropic (-TDeltaS) penalty. The tightest-binding inhibitors (K(d) = 5-9 pM) have increased conformational flexibility. Despite their conformational freedom in solution, flexible inhibitors bind with high affinity because of reduced entropic penalties. Entropic penalties are proposed to arise from conformational freezing of the PNP.inhibitor complex with the entropy term dominated by protein dynamics. The conformationally flexible Immucillins reduce the system entropic penalty. Disrupting the ribosyl 5'-hydroxyl interaction of transition state analogues with PNP causes favorable entropy of binding. Tight binding of the 17 Immucillins is characterized by large enthalpic contributions, emphasizing their similarity to the transition state. Via introduction of flexibility into the inhibitor structure, the enthalpy-entropy compensation pattern is altered to permit tighter binding.
Project description:The concept of enthalpy-entropy compensation (EEC) is one of the highly debated areas of thermodynamics. The conformational change due to restricted double-bond rotation shows a classic two-site chemical exchange phenomenon and has been extensively studied. Fifty-four analogs of N,N-diethyl-m-toluamide (DEET) as a model system were synthesized to study the thermodynamics of the partial amide bond character using nuclear magnetic resonance (NMR) spectroscopy. Line-shape analysis as a function of temperature is used to estimate the chemical exchange. Eyring analysis was then used to convert the chemical exchange rates to determine the transition state enthalpy and entropy of the molecules. The experimental design follows selective variations that perturb one aspect of the molecular system and its influence on the observed thermodynamic effect. The results of the study demonstrate that amide bond resonance in analogs of DEET follows an EEC mechanism. Simple modifications made to DEET's structural motif alter both the enthalpy and entropy of the system and were limited overall to a temperature compensation factor, T ? = 292.20 K, 95% CI [290.66, 293.73]. We suggest EEC as a model to describe the kinetic compensation seen in chemical exchange phenomena in analogs of DEET.
Project description:Enthalpy-entropy compensation (EEC) is very often encountered in chemistry, biology and physics. Its origin is widely discussed since it would allow, for example, a very accurate tuning of the thermodynamic properties as a function of the reactants. However, EEC is often discarded as a statistical artefact, especially when only a limited temperature range is considered. We show that the likeliness of a statistical origin of an EEC can be established with a compensation quality factor (CQF) that depends only on the measured enthalpies and entropies and the experimental temperature range. This is directly derived from a comparison of the CQF with threshold values obtained from a large number of simulations with randomly generated Van 't Hoff plots. The value of CQF is furthermore a direct measure of the existence of a genuine isoequilibrium or isokinetic relationship.
Project description:HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)(2) is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5'-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3' (FL-AT-1) and 5'-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3' (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to approximately 200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar.
Project description:The allosteric coupling constant in K-type allosteric systems is defined as a ratio of the binding of substrate in the absence of effector to the binding of the substrate in the presence of a saturating concentration of effector. As a result, the coupling constant is itself an equilibrium value comprised of a ΔH and a TΔS component. In the scenario in which TΔS completely compensates ΔH, no allosteric influence of effector binding on substrate affinity is observed. However, in this "silent coupling" scenario, the presence of effector causes a change in the ΔH associated with substrate binding. A suggestion has now been made that "silent modulators" are ideal drug leads because they can be modified to act as either allosteric activators or inhibitors. Any attempt to rationally design the effector to be an allosteric activator or inhibitor is likely to be benefitted by knowledge of the mechanism that gives rise to coupling. Hydrogen/deuterium exchange with mass spectrometry detection has now been used to identify regions of proteins that experience conformational and/or dynamic changes in the allosteric regulation. Here, we demonstrate the expected temperature dependence of the allosteric regulation of rabbit muscle pyruvate kinase by Ala to demonstrate that this effector reduces substrate (phosphoenolpyruvate) affinity at 35°C and at 10°C but is silent at intermediate temperatures. We then explore the use of hydrogen/deuterium exchange with mass spectrometry to evaluate the areas of the protein that are modified in the mechanism that gives rise to the silent coupling between Ala and phosphoenolpyruvate. Many of the peptide regions of the protein identified as changing in this silent system (Ala as the effector) were included in changes previously identified for allosteric inhibition by Phe.
Project description:NMR spectroscopy and molecular dynamics (MD) simulations were used to probe the structure and dynamics of complexes of three phosphotyrosine-derived peptides with the Src SH2 domain in an effort to uncover a structural explanation for enthalpy-entropy compensation observed in the binding thermodynamics. The series of phosphotyrosine peptide derivatives comprises the natural pYEEI Src SH2 ligand, a constrained mimic, in which the phosphotyrosine (pY) residue is preorganized in the bound conformation for the purpose of gaining an entropic advantage to binding, and a flexible analogue of the constrained mimic. The expected gain in binding entropy of the constrained mimic was realized; however, a balancing loss in binding enthalpy was also observed that could not be rationalized from the crystallographic structures. We examined protein dynamics to evaluate whether the observed enthalpic penalty might be the result of effects arising from altered motions in the complex. (15)N-relaxation studies and positional fluctuations from molecular dynamics indicate that the main-chain dynamics of the protein show little variation among the three complexes. Root mean squared (rms) coordinate deviations vary by less than 1.5 A for all non-hydrogen atoms for the crystal structures and in the ensemble average structures calculated from the simulations. In contrast to this striking similarity in the structures and dynamics, there are a number of large chemical shift differences from residues across the binding interface, but particularly from key Src SH2 residues that interact with pY, the "hot spot" residue, which contributes about one-half of the binding free energy. Rank-order correlations between chemical shifts and ligand binding enthalpy for several pY-binding residues, coupled with available mutagenesis and calorimetric data, suggest that subtle structural perturbations (<1 A) from the conformational constraint of the pY residue sufficiently alter the geometry of enthalpically critical interactions in the binding pocket to cause the loss of binding enthalpy, leading to the observed enthalpy-entropy compensation. We find no evidence to support the premise that enthalpy-entropy compensation is an inherent property and conclude that preorganization of Src SH2 ligand residues involved in binding hot spots may eventuate in suboptimal interactions with the domain. We propose that introducing constraints elsewhere in the ligand could minimize enthalpy-entropy compensation effects. The results illustrate the utility of the NMR chemical shift to highlight small, but energetically significant, perturbations in structure that might otherwise go unnoticed in an apparently rigid protein.