Unknown

Dataset Information

0

Dynamic closed states of a ligand-gated ion channel captured by cryo-EM and simulations.


ABSTRACT: Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. Biophysical and pharmacological characterization of these receptor proteins relies on high-quality structures in multiple, subtly distinct functional states. However, structural data in this family remain limited, particularly for resting and intermediate states on the activation pathway. Here, we report cryo-electron microscopy (cryo-EM) structures of the proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC) under three pH conditions. Decreased pH was associated with improved resolution and side chain rearrangements at the subunit/domain interface, particularly involving functionally important residues in the β1-β2 and M2-M3 loops. Molecular dynamics simulations substantiated flexibility in the closed-channel extracellular domains relative to the transmembrane ones and supported electrostatic remodeling around E35 and E243 in proton-induced gating. Exploration of secondary cryo-EM classes further indicated a low-pH population with an expanded pore. These results allow us to define distinct protonation and activation steps in pH-stimulated conformational cycling in GLIC, including interfacial rearrangements largely conserved in the pentameric channel family.

SUBMITTER: Rovsnik U 

PROVIDER: S-EPMC8326787 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10945520 | biostudies-literature
| S-EPMC6983364 | biostudies-literature
| S-EPMC10997623 | biostudies-literature
| S-EPMC5673239 | biostudies-literature
| S-EPMC5317004 | biostudies-literature
| S-EPMC6056229 | biostudies-literature
| S-EPMC6235563 | biostudies-literature
| S-EPMC6093708 | biostudies-literature
| S-EPMC3365738 | biostudies-literature
| S-EPMC3021669 | biostudies-literature